Page:Project Longshot - Advanced Design Program Project Report.pdf/41

From Wikisource
Jump to navigation Jump to search
This page has been validated.
40

frequency. Smaller pellet size could potentially lower the coil mass as well as the igniter mass, although the higher frequency would complicate fuel injection in a system that must run for 100 years continuously, without repair. The appendix shows the spectrum available between the DEADALUS pellet size and frequency (since DEADALUS required a higher mass flow).

After the final upper stage separation, the nuclear reactor will be increased to full power in order to charge the interstellar drive capacitors for initial ignition. The Interstellar drive will then be used for both acceleration and deceleration. The system is to be turned off at the appropriate time (determined through an internal navigational calculation), rotated 180 degrees, and restarted, all while staying on course. The payload contains a 300 kw nuclear power reactor which must be also capable of starting and restarting. The nuclear reactor will have to be ignited, and rechanneled to repower the slowly draining capacitors of the interstellar Drive igniter system, after the spacecraft has fully rotated and stabilized in the proper alignment.

3.2.2.3 Feasibility

The entire Interstellar Drive is highly dependent upon enabling technology. Building an actual scale model that is capable of running continuously for 100 years will be a challenge by itself! Barring further significant technological breakthroughs, the collection of fuel will be the most difficult and time consuming