Page:Radio-activity.djvu/441

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
  • estimate, for it includes only the energy radiated into the air.

The actual amount of energy released in the form of α rays is evidently much greater than this on account of the absorption of the α rays by the active matter itself.

It will be shown later that the heating effect of radium and of its products is a measure of the energy of the expelled α particles.


244. Heat emission of radium. P. Curie and Laborde[1] first drew attention to the striking result that a radium compound kept itself continuously at a temperature several degrees higher than that of the surrounding atmosphere. Thus the energy emitted from radium can be demonstrated by its direct heating effect, as well as by photographic and electric means. Curie and Laborde determined the rate of the emission of heat in two different ways. In one method the difference of temperature was observed by means of an iron-constantine thermo-couple between a tube containing one gram of radiferous chloride of barium, of activity about 1/6 of pure radium, and an exactly similar tube containing one gram of pure barium chloride. The difference of temperature observed was 1·5° C. In order to measure the rate of emission of heat, a coil of wire of known resistance was placed in the pure barium chloride, and the strength of the electric current required to raise the barium to the same temperature as the radiferous barium was observed. In the other method, the active barium, enclosed in a glass tube, was placed inside a Bunsen calorimeter. Before the radium was introduced, it was observed that the level of the mercury in the stem remained steady. As soon as the radium, which had previously been cooled in melting ice, was placed in the calorimeter, the mercury column began to move at a regular rate. If the radium tube was removed, the movement of the mercury ceased. It was found from these experiments that the heat emission from the 1 gram of radiferous barium, containing about 1/6 of its weight of pure radium chloride, was 14 gram-calories per hour. Measurements were also made with 0·08 gram of pure radium chloride. Curie and Laborde deduced from these results that 1 gram of pure radium emits a quantity of heat equal to about 100 gram-calories per hour. This result was confirmed by the experiments of Runge

  1. P. Curie and Laborde, C. R. 136, p. 673, 1903.