Page:Radio-activity.djvu/496

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

the expulsion of β particles from its mass. There is, however, a possibility that radium might change in weight even though none of the radio-active products were allowed to escape. For example, if the view is taken that gravitation is the result of forces having their origin in the atom, it is possible that, if the atom were disintegrated, the weight of the parts might not be equal to that of the original atom.

A large number of experiments have been made to see if radium preparations, kept in a sealed tube, alter in weight. With the small quantities of radium available to the experimenter, no difference of weight of radium preparations with time has yet been established with certainty. Heydweiller stated that he had observed a loss of weight of radium and Dorn also obtained a slight indication of change in weight. These results have not, however, been confirmed. Forch, later, was unable to observe any appreciable change.

J. J. Thomson[1] has made experiments to see if the ratio of weight to mass for radium is the same as for inactive matter. We have seen in section 48 that a charge in motion possesses an apparent mass which is constant for slow speeds but increases as the speed of light is approached. Now radium emits some electrons at a velocity comparable with the velocity of light, and presumably these electrons were in rapid motion in the atom before their expulsion. It might thus be possible that the ratio for radium would differ from that for ordinary matter. The pendulum method was used, and the radium was enclosed in a small light tube suspended by a silk fibre. Within the limit of experimental error the ratio of weight to mass was found to be the same as for ordinary matter, so that we may conclude that the number of electrons moving with a velocity approaching that of light is small compared with the total number present.


266. Total emission of energy from the radio-element. It has been shown that 1 gram of radium emits energy at the rate of 100 gram-calories per hour or 876,000 gram-calories per year. If 1 gram of radium in radio-active equilibrium be set apart, its radio-activity and consequent heat emission is given at a

  1. J. J. Thomson, International Electrical Congress, St Louis, Sept. 1904.