Page:Radio-activity.djvu/502

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

products, which appear at the end of the series of radio-active changes, or that the helium is in reality the expelled α particle. The evidence at present points to the latter as being the more probable explanation. In the first place, the emanation diffuses like a gas of heavy molecular weight, and it appears probable that after the expulsion of a few α particles, the atomic weight of the final product is comparable with that of the emanation. On the other hand, the value of e/m determined for the projected α particle points to the conclusion that, if it consists of any known kind of matter, it is either hydrogen or helium.

There has been a tendency to assume that the helium produced from the radium emanation is the last transformation product of that substance. The evidence, however, does not support this view. We have seen that the emanation, after the initial rapid changes, is transformed very slowly. If the helium were the final product, the amount present in the emanation tube after a few days or weeks would be insignificant, since the product radium D intervenes, which takes 40 years to be half transformed. Since the helium cannot be the final product of the series of changes, and since all the other products are radio-active, and almost certainly of high atomic weight, it is difficult to see what position the helium atom occupies in the scheme of transformation, unless it be the α particle expelled during the successive changes.

It is a matter of great difficulty to settle definitely whether the α particle is a projected helium atom or not. On account of the very small deflection of the α rays in an electric field, and the complex nature of the α radiation from radium, an accurate determination of the value e/m for the α particle is beset with difficulties.

It may be possible to settle the question by accurate measurements of the volume of gas in a tube, filled originally with the radium emanation. Since the emanation itself, and two of the rapidly changing products which result from it, emit α particles, the final volume of the α particles, if they can exist in the gaseous state, would be three times the volume of the emanation. Ramsay and Soddy (section 172) have made experiments of this kind, but the results obtained were very contradictory, depending upon the kind of glass employed. In one case, the volume of the