Page:ScienceAndHypothesis1905.djvu/69

From Wikisource
Jump to navigation Jump to search
This page has been validated.

should be led to contradictory consequences. It would be, therefore, impossible to found on those premisses a coherent geometry. Now, this is precisely what Lobatschewsky has done. He assumes at the outset that several parallels may be drawn through a point to a given straight line, and he retains all the other axioms of Euclid. From these hypotheses he deduces a series of theorems between which it is impossible to find any contradiction, and he constructs a geometry as impeccable in its logic as Euclidean geometry. The theorems are very different, however, from those to which we are accustomed, and at first will be found a little disconcerting. For instance, the sum of the angles of a triangle is always less than two right angles, and the difference between that sum and two right angles is proportional to the area of the triangle. It is impossible to construct a figure similar to a given figure but of different dimensions. If the circumference of a circle be divided into n equal parts, and tangents be drawn at the points of intersection, the n tangents will form a polygon if the radius of the circle is small enough, but if the radius is large enough they will never meet. We need not multiply these examples. Lobatschewsky's propositions have no relation to those of Euclid, but they are none the less logically interconnected.

Riemann's Geometry.—Let us imagine to ourselves a world only peopled with beings of no thickness, and suppose these "infinitely flat"