Page:Scientific Memoirs, Vol. 2 (1841).djvu/447

From Wikisource
Jump to navigation Jump to search
This page has been validated.
OHM ON THE GALVANIC CIRCUIT.
435

part preponderating on the one side of any disk, within the portion in the act of decomposition, will, by force of its innate repulsive power, constantly oppose the movement of a similar constituent to the same side, so that the decomposing force of the circuit has not merely to overcome the constant connexion of the two constituents inter se, but also this reaction of each constituent on itself. It is hence evident that a cessation in the chemical change must occur, if at any time there arises an equilibrium between the two forces. This state, founded on a peculiar chemical and permanent separation of the constituents of the portion of the circuit in the act of decomposition, is the very one from which I started, and whose nature I have endeavoured to determine as accurately as possible in the Appendix. Even the mere description of the mode of origin of this highly remarkable phænomenon shows that at the extremities of the divided portion no natural equilibrium can occur, on which account the two constituents must be retained at these two places by a mechanical force, unless they pass over to the next parts of the circuit, or, where the other circumstances allow, separate entirely from the circuit. Who would not recognise in this plain statement all the chief circumstances hitherto observed of the external phænomenon in chemical decompositions by the circuit?

If the current, and, at the same time, the decomposing force, be suddenly interrupted, the separated constituents gradually return to their natural equilibrium; but tend to re-assume immediately the relinquished state, if the current is re-established. During this process, both the conductibility, and the mode of excitation between the elements of the portion in the act of decomposition, obviously vary with their chemical nature; but this necessarily produces a constant change in the electrical separation, and in the magnitudes of the current in the galvanic circuit dependent thereon, which only finds its natural limits in the permanent state of the electrical separation. For the accurate determination of this last stage of the electric current it is requisite to be acquainted with the law which governs the conductibility and force of excitation of the variable mixtures, formed of two different liquids. Experiment has hitherto afforded insufficient data for this purpose, I have therefore given the preference to a theoretical supposition, which will supply its place until the true law is discovered.