Page:Scientific Papers of Josiah Willard Gibbs.djvu/44

From Wikisource
Jump to navigation Jump to search
This page has been validated.
8
GRAPHICAL METHODS IN THE

evidently denote the mass of the part of the plane included within the limits of integration, this mass being taken positively or negatively according to the direction of the circuit.

Thus far we have made no supposition in regard to the nature of the law, by which we associate the points of a plane with the states of the body, except a certain condition of continuity. Whatever law we may adopt, we obtain a method of representation of the thermodynamic properties of the body, in which the relations existing between the functions of the state of the body are indicated by a net-work of lines, while the work done and the heat received by the body when it changes its state are represented by integrals extending over the elements of a line, and also by an integral extending over the elements of certain areas in the diagram, or, if we choose to introduce such a consideration, by the mass belonging to these areas.

The different diagrams which we obtain by different laws of association are all such as may be obtained from one another by a process of deformation, and this consideration is sufficient to demonstrate their properties from the well-known properties of the diagram in which the volume and pressure are represented by rectangular co-ordinates. For the relations indicated by the net-work of isometrics, isopiestics etc., are evidently not altered by deformation of the surface upon which they are drawn, and if we conceive of mass as belonging to the surface, the mass included within given lines will also not be affected by the process of deformation. If, then, the surface upon which the ordinary diagram is drawn has the uniform superficial density 1, so that the work and heat of a circuit, which are represented in this diagram by the included area, shall also be represented by the mass included, this latter relation will hold for any diagram formed from this by deformation of the surface on which it is drawn.

The choice of the method of representation is of course to be determined by considerations of simplicity and convenience, especially in regard to the drawing of the lines of equal volume, pressure, temperature, energy and entropy, and the estimation of work and heat. There is an obvious advantage in the use of diagrams of constant scale, in which the work and heat are represented simply by areas. Such diagrams may of course be produced by an infinity of different methods, as there is no limit to the ways of deforming a plane figure without altering the magnitude of its elements. Among these methods, two are especially important,—the ordinary method in which the volume and pressure are represented by rectilinear co-ordinates, and that in which the entropy and temperature are so represented. A diagram formed by the former method may be called, for the sake of distinction, a volume-pressure diagram,—one formed by the latter, an entropy-temperature diagram. That the latter as well as the former satisfies