tangent plane, but has a contact of the third order with it in the section of least curvature. The critical point, therefore, must be a point where the line of that principal curvature which changes its sign is tangent to the line which separates positive from negative curvatures.
From the last paragraphs we may derive the following physical property of the critical state:—Although this is a limiting state between those of stability and those of instability in respect to continuous changes, and although such limiting states are in general unstable in respect to such changes, yet the critical state is stable in regard to them. A similar proposition is true in regard to absolute stability, i.e., if we disregard the distinction between continuous and discontinuous changes, viz: that although the critical state is a limiting state between those of stability and instability, and although the equilibrium of such limiting states is in general neutral (when we suppose the substance surrounded by a medium of constant pressure and temperature), yet the critical point is stable.
From what has been said of the curvature of the primitive surface at the critical point, it is evident, that if we take a point in this surface infinitely near to the critical point, and such that the tangent planes for these two points shall intersect in a line perpendicular to the section of least curvature at the critical point, the angle made by the two tangent planes will be an infinitesimal of the same order as the cube of the distance of these points. Hence, at the critical point
and if we imagine the isothermal and isopiestic (line of constant pressure) drawn for the critical point upon the primitive surface, these lines will have a contact of the second order.
Now the elasticity of the substance at constant temperature and its specific heat at constant pressure may be defined by the equations,
therefore the critical point
The last four equations would also hold good if were substituted for , and vice versa.