Page:Scientific Papers of Josiah Willard Gibbs.djvu/97

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES.
61

of these differential coefficients can have any value other than 0, for the state of the system for which . For otherwise, as it would generally be possible, as before, by some infinitely small modification of the case, to render impossible any change like or nearly like that which might be supposed to occur, this infinitely small modification of the case would make a finite difference in the value of the differential coefficients which had before the finite values, or in some of lower orders, which is contrary to that continuity which we have reason to expect. Such considerations seem to justify us in regarding such a state as we are discussing as one of theoretical equilibrium; although as the equilibrium is evidently unstable, it cannot be realized.

We have still to prove that the condition enunciated is in every case necessary for equilibrium. It is evidently so in all cases in which the active tendencies of the system are so balanced that changes of every kind, except those excluded in the statement of the condition of equilibrium, can take place reversibly (i.e., both in the positive and the negative direction,) in states of the system differing infinitely little from the state in question. In this case, we may omit the sign of inequality and write as the condition of such a state of equilibrium

, i.e., (10)

But to prove that the condition previously enunciated is in every case necessary, it must be shown that whenever an isolated system remains without change, if there is any infinitesimal variation in its state, not involving a finite change of position of any (even an infinitesimal part) of its matter, which would diminish its energy by a quantity which is not infinitely small relatively to the variations of the quantities which determine the state of the system, without altering its entropy,—or, if the system has thermally isolated parts, without altering the entropy of any such part,—this variation involves changes in the system which are prevented by its passive forces or analogous resistances to change. Now, as the described variation in the state of the system diminishes its energy without altering its entropy, it must be regarded as theoretically possible to produce that variation by some process, perhaps a very indirect one, so as to gain a certain amount of work (above all expended on the system). Hence we may conclude that the active forces or tendencies of the system favor the variation in question, and that equilibrium cannot subsist unless the variation is prevented by passive forces.

The preceding considerations will suffice, it is believed, to establish the validity of the criterion of equilibrium which has been given. The criteria of stability may readily be deduced from that of equilibrium. We will now proceed to apply these principles to systems consisting of heterogeneous substances and deduce the special laws