The value of
Ψ
{\displaystyle \mathbf {\Psi } }
in terms of
h
{\displaystyle h}
thus becomes
Ψ
=
q
α
K
∫
h
∞
d
h
h
2
−
l
2
{\displaystyle \mathbf {\Psi } ={\frac {q\alpha }{\mathrm {K} }}\int _{h}^{\infty }{\frac {dh}{h^{2}-l^{2}}}}
.
(17)
Equation (11) now becomes
x
2
h
2
+
ρ
2
α
h
2
−
l
2
=
1
{\displaystyle {\frac {x^{2}}{h^{2}}}+{\frac {\rho ^{2}\alpha }{h^{2}-l^{2}}}=1}
,
(18)
so that instead of the cylindrical coordinates
x
{\displaystyle x}
and
ρ
(
=
y
2
+
z
2
)
{\displaystyle \rho (={\sqrt {y^{2}+z^{2}}})}
we, can take
h
{\displaystyle h}
and
ϕ
{\displaystyle \phi }
where
x
=
h
cos
ϕ
,
ρ
=
h
2
−
l
2
α
sin
ϕ
{\displaystyle x=h\cos \phi ,\ \rho ={\frac {\sqrt {h^{2}-l^{2}}}{\sqrt {\alpha }}}\sin \phi }
.
(19)
From (18) we have in terms of
h
{\displaystyle h}
and
ϕ
{\displaystyle \phi }
d
h
d
x
=
(
h
2
−
l
2
)
cos
ϕ
h
2
−
l
2
cos
2
ϕ
,
d
h
d
ρ
=
h
h
2
−
l
2
sin
ϕ
α
h
2
−
l
2
cos
2
ϕ
{\displaystyle {\frac {dh}{dx}}{=}{\frac {(h^{2}-l^{2})\cos \phi }{h^{2}-l^{2}\cos ^{2}\phi }},\ {\frac {dh}{d\rho }}{=}{\frac {h{\sqrt {h^{2}-l^{2}}}\sin \phi {\sqrt {\alpha }}}{h^{2}-l^{2}\cos ^{2}\phi }}}
.
Hence
E
1
=
−
d
Ψ
d
h
⋅
d
h
d
x
=
α
q
cos
ϕ
K
h
2
−
l
2
cos
2
ϕ
)
{\displaystyle \mathrm {E} _{1}=-{\frac {d\mathbf {\Psi } }{dh}}\cdot {\frac {dh}{dx}}={\frac {\alpha q\ \cos \phi }{K{\sqrt {h^{2}-l^{2}\cos ^{2}\phi )}}}}}
,
(20)
E
ρ
=
−
1
α
d
Ψ
d
h
⋅
d
h
d
ρ
=
q
h
sin
ϕ
α
K
h
2
−
l
2
(
h
2
−
l
2
cos
2
ϕ
)
{\displaystyle \mathrm {E} _{\rho }=-{\frac {1}{\alpha }}{\frac {d\mathbf {\Psi } }{dh}}\cdot {\frac {dh}{d\rho }}={\frac {qh\ \sin \phi {\sqrt {\alpha }}}{\mathrm {K} {\sqrt {h^{2}-l^{2}}}(h^{2}-l^{2}\cos ^{2}\phi )}}}
,
(21)
H
=
K
u
E
ρ
=
q
u
h
sin
ϕ
α
h
2
−
l
2
(
h
2
−
l
2
cos
2
ϕ
)
{\displaystyle \mathrm {H} =\mathrm {K} u\mathrm {E} _{\rho }={\frac {quh\ \sin \phi {\sqrt {\alpha }}}{\sqrt {h^{2}-l^{2}(h^{2}-l^{2}\cos ^{2}\phi )}}}}
,
(22)
I now pass on to calculate the total energy possessed by the ellipsoid when in motion along its axis of figure. In making the calculation I shall suppose that
a
2
>
a
b
2
{\displaystyle a^{2}>ab^{2}}
, i.e., that
l
2
{\displaystyle l^{2}}
is positive. The case in which
a
2
<
a
b
2
{\displaystyle a^{2}<ab^{2}}
can be deduced by the appropriate mathematical transformation.
I have shown {§ 22} that the total energy, viz. the volume integral of
K
E
2
+
μ
H
2
8
π
{\displaystyle {\frac {\mathrm {K} \mathbf {E} ^{2}+\mu \mathbf {H} ^{2}}{8\pi }}}
, due to the motion of a charge on any surface, is
W
=
1
2
q
Ψ
0
+
2
T
{\displaystyle \mathrm {W} {=}{\frac {1}{2}}q\mathbf {\Psi } _{0}+2\mathrm {T} }
,
where
Ψ
0
{\displaystyle \Psi _{0}}
is the value of the convection-potential at the surface of the body, and T is the magnetic part of the energy, viz., the volume integral of
μ
H
2
/
8
π
{\displaystyle \mu H^{2}/8\pi }
.