Page:Sm all cc.pdf/122

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
119

it succeeds whether or not you are aware of their presence. Randomization is less efficient that the other methods, however, because it converts bias into random noise, rather than quantifying or removing bias.

  • correlation: If you cannot control a problem variable but can measure it, measure and record its value at each data measurement. Later, crossplot the variable of interest versus this problem variable. This technique succeeds even if the relationship between variables is nonlinear. It has disadvantages (Chapter 3): both types of measurement may change as a function of time, leading to a noncausal correlation, or a time lag may obscure the relationship.
  • artificial variation: Deliberately change the problem variable by more than it is likely to change normally, in order to estimate the conditions under which this variable is prominent, as well as its maximum possible effect. The advantage of this technique is its ability to detect effects that are ordinarily subtle, by exaggerating them. The main disadvantage is that ordinarily trivial effects can be misinterpreted as disruptive. When the relationship between two variables is highly nonlinear, artificial variation is a poor predictor of the normal relationship.

When Irving Langmuir was trying to develop a new light bulb, he knew that ideally its interior should have a perfect vacuum. Faced with the impossibility of attaining that ideal, Langmuir deliberately added different gases to assess their effects. He discovered the gas-filled (fluorescent) light. Langmuir [1928] said,

“This principle of research I have found extremely useful on many occasions. When it is suspected that some useful result is to be obtained by avoiding certain undesired factors, but it is found that these factors are very difficult to avoid, then it is a good plan to increase deliberately each of these factors in turn so as to exaggerate their bad effects, and thus become so familiar with them that one can determine whether it is really worthwhile avoiding them.”

Another example: if you suspect that changes in equipment readings are caused by a temperature-sensitive electronic component, remove the equipment housing and blast various components with either a heat gun (e.g., a hair dryer) or coolant gas, while monitoring equipment readings.

An alternative to artificial variation is to investigate naturally occurring extreme points. The advantage is the same: maximizing an ordinarily subtle effect, to evaluate its potential impact.

Numerous studies of type-Ia supernovae during the past several years have shown a consistent pattern of increasing redshift with decreasing apparent magnitude (i.e., greater speed at greater distance) that implies that the expansion of the universe is accelerating. This unexpected conclusion was not compelling, however. The observed pattern could also be produced by dust or chemical evolution. A single new data point, from a supernova with a redshift of 1.7, far beyond the 0.3-0.9 range of previous data, excludes the alternative ideas and confirms that the universe is accelerating [Schwarzschild, 2001].

  • sequential removal: When more than one variable may be influential, remove the dominant one and look at the effect of the next variable on the data of interest. Then remove this variable as well, so that possible effects of additional variables can be examined. This technique works only when the problem variables are controllable and their relative importance can be estimated. Nevertheless, it