Page:Sm all cc.pdf/189

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
186


our need for adaptability at an even faster pace, because each technological change can have unforeseen interactions, either with the environment or with other technological changes. In response, many scientists are becoming environmental and technological troubleshooters.

Biological evolution demonstrates that specialization only survives in a static environment. Society’s needs concerning specialization versus adaptability are changing: the pace of technological change is increasing, professions are waxing and waning, and therefore our society needs individuals with the ability to move into newly emerging careers. We also need individuals comfortable in interdisciplinary teams.

Scientific education is evolving in response to these changes. For graduate study, the change is less than one might expect: graduate programs entail specialized research, but the competencies learned actually increase the student’s adaptability. The old notion of an early academic education followed by a lifetime profession may be obsolete; it is certainly incomplete. The rapid pace of scientific and technological change means that knowledge is not static and education is never really finished. Increasingly, the educational system is being used for retooling and redirection. Students are teaching the professors by communicating the perspectives and needs of industry. Conversely, the students are taking practical applications of their course work to the work-place immediately, not years later.

Major changes of any kind are stressful -- to individuals, groups, and society. The redirection of scientific efforts and education, in response to societal needs, is non-trivial, emotionally taxing, but essential.

The public and politician, having grown up with textbook-science facts, expect certainty from scientists. We, in contrast, savor the uncertainty implicit in forefront science, where ideas are explored, modified, and usually discarded. We offer the authority of science with humility. More than once in the history of science, scientists have had to fight for the privilege of questioning authority. This popular expectation of scientific certainty creates roadblocks, when the implications of scientific research are that society needs to take expensive action. Scientific debate provides a political excuse for societal inaction, even if the key issues are agreed upon among scientists.

An example is the greenhouse effect, concisely summarized by Stevens [1992a]. Researchers agree that: (1) atmospheric carbon dioxide is rising due to burning fossil fuels and clearing rainforests, (2) atmospheric carbon dioxide will have doubled within the next 60 years, (3) increased carbon dioxide warms the earth through the greenhouse effect, and (4) as a consequence, the earth will warm up during the coming decades.

Some issues are still being debated: How much greenhouse warming has already occurred? How fast and how much warming will the doubling of carbon dioxide induce? What will the local climate effects be? Uncertainty over these questions obscures consensus on the former concerns. We postpone remediation; ‘wait-and-see’ is cheaper.

Technological innovations are the most frequent and obvious contributions of science to society, but occasionally science has a more fundamental impact: it can change humanity’s self-image [Derry, 1999], by generating “the light which has served to illuminate man’s place in the universe” [J.F. Kennedy, 1963]. The determinism of Newton’s mechanics and the indeterminacy of quantum mechanics challenge our assumption of free will, but this assumption is rooted too firmly to be damaged. The Copernican revolution did not merely overthrow the concept of Earth as center of the rotating universe; it dislodged humanity also from that position. Darwin’s theory of biological