Page:Sm all cc.pdf/9

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
6

visible , is the goodness of the Creator, the one true God.” [St. Augustine, 354-430 A.D., a]

Augustine was probably the major influence on European thought for the next seven centuries. Like other religious mystics before and after him, he turned attention away from rationalism and the senses and toward concern for religion. If the three pillars of wisdom are empiricism, rationalism, and faith (or intuition), then Augustine turned the focus of intellectual thought to the third and previously most neglected of these pillars: intuition, the direct realization of truth by inspiration (Chambliss, 1954). Augustine achieved his insights with the aid of purgation, expecting ‘less disciplined’ individuals to accept these insights as dogma. Scientific insights, in contrast, are tested before acceptance. Yet even today scientific insights, once accepted by scientists, are presented to the public as dogma.

In 529 A.D. the Emperor Justinian closed the School of Athens; European science had begun to wane long before. During the long European medieval period of the next six hundred years, technological change virtually ceased. Because technology is an inevitable outgrowth of science, the lack of medieval technological change implies an absence of science.

Augustine had distinguished two types of reason (ratio): sapientia, the knowledge of eternal things, is the ratio superior, while scientia, the knowledge of temporal things, is the ratio inferior [Fairweather, 1956]. Almost all records from the European medieval period are from the Church, an institution that still followed Augustine’s anti-scientific lead. For example, Isidore of Seville’s book Etymologies, an early 7th century compilation of knowledge, was influential for 500 years, yet Brehaut [1912] comments on Isidore’s ‘knowledge’:

“The attitude of Isidore and his time is exactly opposite to ours. To him the supernatural world was the demonstrable one. Its phenomena, or what were supposed to be such, were accepted as valid, while no importance was attached to evidence offered by the senses as to the material.”

Arabs, not Europeans, promoted science throughout the first millennium A.D. Alexander had begun the eastward spread of Greek science. When intellectual freedom waned in the Mediterranean, some scientists and scholars moved to Persia, where it was still encouraged. In the 7th and 8th centuries, the Bedouin tribes of the Arabian Peninsula promulgated Islam throughout the region from Spain to India; they also spread a culture that was remarkably fertile for science.

The Muslim armies were religiously single-minded. They were also tolerant of cultural variations and willing to absorb the heterogeneous cultures that they encountered and conquered. Among the knowledge assimilated were Indian and Babylonian mathematics and the Greek manuscripts. At a time when medieval Europe was turning away from the harshness of worldly affairs, the Muslim were embracing nature’s diversity and surpassing the Greeks in applied knowledge. The Arabs adopted Greek scientific methods and knowledge, then added their own observations and came to fresh conclusions. The Arabs were the first to counter the Greek emphasis on contemplation and logic with an insistence on observation.

By the 12th century, Arab science included inexpensive writing paper, medical care (including hospitals), major advances in optics, significant advances in observational astronomy, a highly simplified numeric system, and the equation. The latter two were crucial scientific building blocks. Al-Khwarizmi and other Muslim mathematicians had taken the Babylonian sexagesimal (60-based, e.g. seconds and minutes) and Indian decimal systems and further simplified them into a powerful