Page:Somerville Mechanism of the heavens.djvu/20

From Wikisource
Jump to navigation Jump to search
This page has been validated.
xiv
PRELIMINARY DISSERTATION.

to perform its revolution from the disturbing action of Saturn alone. The periods in which the nodes revolve are also very great. Beside these, the inclination and eccentricity of every orbit are in a state of perpetual, but slow change. At the present time, the inclinations of all the orbits are decreasing; but so slowly, that the inclination of Jupiter's orbit is only six minutes less now than it was in the age of Ptolemy. The terrestrial eccentricity is decreasing at the rate of 3914 miles in a century; and if it were to decrease equably, it would be 36300 years before the earth's orbit became a circle. But in the midst of all these vicissitudes, the major axes and mean motions of the planets remain permanently independent of secular changes; they are so connected by Kepler's law of the squares of the periodic times being proportional to the cubes of the mean distances of the planets from the sun, that one cannot vary without affecting the other.

With the exception of these two elements, it appears, that all the bodies are in motion, and every orbit is in a state of perpetual change. Minute as these changes are, they might be supposed liable to accumulate in the course of ages sufficiently to derange the whole order of nature, to alter the relative positions of the planets, to put an end to the vicissitudes of the seasons, and to bring about collisions, which would involve our whole system, now so harmonious, in chaotic confusion. The consequences being so dreadful, it is natural to inquire, what proof exists that creation will be preserved from such a catastrophe? For nothing can be known from observation, since the existence of the human race has occupied but a point in duration, while these vicissitudes embrace myriads of ages. The proof is simple and convincing. All the variations of the solar system, as well secular as periodic, are expressed analytically by the sines and cosines of circular arcs, which increase with the time; and as a sine or cosine never can exceed the radius, but must oscillate between zero and unity, however much the time may increase, it follows, that when the variations have by slow changes accumulated in however long a time to a maximum, they decrease by the same slow degrees, till they arrive at their smallest value, and then begin a new course, thus for ever oscillating about a mean value. This, however, would not be the case if the planets