Page:System of Logic.djvu/180

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

This, for instance, they would be able to do, if they could prove chronologically that we had the conviction (at least practically) so early in infancy as to be anterior to those impressions on the senses, upon which, on the other theory, the conviction is founded. This, however, can not be proved: the point being too far back to be within the reach of memory, and too obscure for external observation. The advocates of the _a priori_ theory are obliged to have recourse to other arguments. These are reducible to two, which I shall endeavor to state as clearly and as forcibly as possible.

§ 5. In the first place it is said, that if our assent to the proposition that two straight lines can not inclose a space, were derived from the senses, we could only be convinced of its truth by actual trial, that is, by seeing or feeling the straight lines; whereas, in fact, it is seen to be true by merely thinking of them. That a stone thrown into water goes to the bottom, may be perceived by our senses, but mere thinking of a stone thrown into the water would never have led us to that conclusion: not so, however, with the axioms relating to straight lines: if I could be made to conceive what a straight line is, without having seen one, I should at once recognize that two such lines can not inclose a space. Intuition is "imaginary looking;"(72) but experience must be real looking: if we see a property of straight lines to be true by merely fancying ourselves to be looking at them, the ground of our belief can not be the senses, or experience; it must be something mental.

To this argument it might be added in the case of this particular axiom (for the assertion would not be true of all axioms), that the evidence of it from actual ocular inspection is not only unnecessary, but unattainable. What says the axiom? That two straight lines can not inclose a space; that after having once intersected, if they are prolonged to infinity they do not meet, but continue to diverge from one another. How can this, in any single case, be proved by actual observation? We may follow the lines to any distance we please; but we can not follow them to infinity: for aught our senses can testify, they may, immediately beyond the farthest point to which we have traced them, begin to approach, and at last meet. Unless, therefore, we had some other proof of the impossibility than observation affords us, we should have no ground for believing the axiom at all.

To these arguments, which I trust I can not be accused of understating, a satisfactory answer will, I conceive, be found, if we advert to one of the characteristic properties of geometrical forms--their capacity of being painted in the imagination with a distinctness equal to reality: in other words, the exact resemblance of our ideas of form to the sensations which