Page:System of Logic.djvu/198

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
192
REASONING.

What is commonly called mathematical certainty, therefore, which comprises the twofold conception of unconditional truth and perfect accuracy, is not an attribute of all mathematical truths, but of those only which relate to pure Number, as distinguished from Quantity in the more enlarged sense; and only so long as we abstain from supposing that the numbers are a precise index to actual quantities. The certainty usually ascribed to the conclusions of geometry, and even to those of mechanics, is nothing whatever but certainty of inference. We can have full assurance of particular results under particular suppositions, but we can not have the same assurance that these suppositions are accurately true, nor that they include all the data which may exercise an influence over the result in any given instance.

§ 4. It appears, therefore, that the method of all Deductive Sciences is hypothetical. They proceed by tracing the consequences of certain assumptions; leaving for separate consideration whether the assumptions are true or not, and if not exactly true, whether they are a sufficiently near approximation to the truth. The reason is obvious. Since it is only in questions of pure number that the assumptions are exactly true, and even there only so long as no conclusions except purely numerical ones are to be founded on them; it must, in all other cases of deductive investigation, form a part of the inquiry, to determine how much the assumptions want of being exactly true in the case in hand. This is generally a matter of observation, to be repeated in every fresh case; or if it has to be settled by argument instead of observation, may require in every different case different evidence, and present every degree of difficulty, from the lowest to the highest. But the other part of the process—namely, to determine what else may be concluded if we find, and in proportion as we find, the assumptions to be true—may be performed once for all, and the results held ready to be employed as the occasions turn up for use. We thus do all beforehand that can be so done, and leave the least possible work to be performed when cases arise and press for a decision. This inquiry into the inferences which can be drawn from assumptions, is what properly constitutes Demonstrative Science.

It is of course quite as practicable to arrive at new conclusions from facts assumed, as from facts observed; from fictitious, as from real, inductions. Deduction, as we have seen, consists of a series of inferences in this form—a is a mark of b, b of c, c of d, therefore a is a mark of d, which last may be a truth inaccessible to direct observation. In like manner it is allowable to say, suppose that a were a mark of b, b of c, and c of d, a would be a mark of d, which last conclusion was not thought of by those who laid down the premises. A system of propositions as complicated as geometry might be deduced from assumptions which are false; as was done by Ptolemy, Descartes, and others, in their attempts to explain synthetically the phenomena of the solar system on the supposition that the apparent motions of the heavenly bodies were the real motions, or were produced in some way more or less different from the true one. Sometimes the same thing is knowingly done, for the purpose of showing the falsity of the assumption; which is called a reductio ad absurdum. In such cases, the reasoning is as follows: a is a mark of b, and b of c; now if c were also a mark of d, a would be a mark of d; but d is known to be a mark of the absence of a; consequently a would be a mark of its own absence, which is a contradiction; therefore c is not a mark of d.