Page:System of Logic.djvu/218

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
212
INDUCTION.

we should have examined without exception every known species. It is the number and nature of the instances, and not their being the whole of those which happen to be known, that makes them sufficient evidence to prove a general law: while the more limited assertion, which stops at all known animals, can not be made unless we have rigorously verified it in every species. In like manner (to return to a former example) we might have inferred, not that all the planets, but that all planets, shine by reflected light: the former is no induction; the latter is an induction, and a bad one, being disproved by the case of double stars—self-luminous bodies which are properly planets, since they revolve round a centre.

§ 2. There are several processes used in mathematics which require to be distinguished from Induction, being not unfrequently called by that name, and being so far similar to Induction properly so called, that the propositions they lead to are really general propositions. For example, when we have proved with respect to the circle, that a straight line can not meet it in more than two points, and when the same thing has been successively proved of the ellipse, the parabola, and the hyperbola, it may be laid down as a universal property of the sections of the cone. The distinction drawn in the two previous examples can have no place here, there being no difference between all known sections of the cone and all sections, since a cone demonstrably can not be intersected by a plane except in one of these four lines. It would be difficult, therefore, to refuse to the proposition arrived at, the name of a generalization, since there is no room for any generalization beyond it. But there is no induction, because there is no inference: the conclusion is a mere summing up of what was asserted in the various propositions from which it is drawn. A case somewhat, though not altogether, similar, is the proof of a geometrical theorem by means of a diagram. Whether the diagram be on paper or only in the imagination, the demonstration (as formerly observed[1]) does not prove directly the general theorem; it proves only that the conclusion, which the theorem asserts generally, is true of the particular triangle or circle exhibited in the diagram; but since we perceive that in the same way in which we have proved it of that circle, it might also be proved of any other circle, we gather up into one general expression all the singular propositions susceptible of being thus proved, and embody them in a universal proposition. Having shown that the three angles of the triangle ABC are together equal to two right angles, we conclude that this is true of every other triangle, not because it is true of ABC, but for the same reason which proved it to be true of ABC. If this were to be called Induction, an appropriate name for it would be, induction by parity of reasoning. But the term can not properly belong to it; the characteristic quality of Induction is wanting, since the truth obtained, though really general, is not believed on the evidence of particular instances. We do not conclude that all triangles have the property because some triangles have, but from the ulterior demonstrative evidence which was the ground of our conviction in the particular instances.

There are nevertheless, in mathematics, some examples of so-called Induction, in which the conclusion does bear the appearance of a generalization grounded on some of the particular cases included in it. A mathematician, when he has calculated a sufficient number of the terms of an al-

  1. Supra, p. 145.