Page:System of Logic.djvu/227

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
INDUCTIONS IMPROPERLY SO CALLED.
221

to affirm any predicates at all, of a subject incapable of being observed otherwise than piecemeal: much less could we extend those predicates by induction to other similar subjects. Induction, therefore, always presupposes, not only that the necessary observations are made with the necessary accuracy, but also that the results of these observations are, so far as practicable, connected together by general descriptions, enabling the mind to represent to itself as wholes whatever phenomena are capable of being so represented.

§ 5. Dr. Whewell has replied at some length to the preceding observations, restating his opinions, but without (as far as I can perceive) adding any thing material to his former arguments. Since, however, mine have not had the good fortune to make any impression upon him, I will subjoin a few remarks, tending to show more clearly in what our difference of opinion consists, as well as, in some measure, to account for it.

Nearly all the definitions of induction, by writers of authority, make it consist in drawing inferences from known cases to unknown; affirming of a class, a predicate which has been found true of some cases belonging to the class; concluding because some things have a certain property, that other things which resemble them have the same property—or because a thing has manifested a property at a certain time, that it has and will have that property at other times.

It will scarcely be contended that Kepler's operation was an Induction in this sense of the term. The statement, that Mars moves in an elliptical orbit, was no generalization from individual cases to a class of cases. Neither was it an extension to all time, of what had been found true at some particular time. The whole amount of generalization which the case admitted of, was already completed, or might have been so. Long before the elliptic theory was thought of, it had been ascertained that the planets returned periodically to the same apparent places; the series of these places was, or might have been, completely determined, and the apparent course of each planet marked out on the celestial globe in an uninterrupted line. Kepler did not extend an observed truth to other cases than those in which it had been observed: he did not widen the subject of the proposition which expressed the observed facts. The alteration he made was in the predicate. Instead of saying, the successive places of Mars are so and so, he summed them up in the statement, that the successive places of Mars are points in an ellipse. It is true, this statement, as Dr. Whewell says, was not the sum of the observations merely; it was the sum of the observations _seen under a new point of view.[1] But it was not the sum of more_ than the observations, as a real induction is. It took in no cases but those which had been actually observed, or which could have been inferred from the observations before the new point of view presented itself. There was not that transition from known cases to unknown, which constitutes Induction in the original and acknowledged meaning of the term.

Old definitions, it is true, can not prevail against new knowledge: and if the Keplerian operation, as a logical process, be really identical with what takes place in acknowledged induction, the definition of induction ought to be so widened as to take it in; since scientific language ought to adapt itself to the true relations which subsist between the things it is employed to designate. Here then it is that I am at issue with Dr. Whewell. He

  1. Phil. of Discov., p. 256.