Page:System of Logic.djvu/257

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
LAW OF CAUSATION.
251

whom we can suppose acquainted with the original distribution of all natural agents, and with the whole of their properties, that is, the laws of succession existing between them and their effects: saving the far more than human powers of combination and calculation which would be required, even in one possessing the data, for the actual performance of the task.

§ 9. Since every thing which occurs is determined by laws of causation and collocations of the original causes, it follows that the co-existences which are observable among effects can not be themselves the subject of any similar set of laws, distinct from laws of causation. Uniformities there are, as well of co-existence as of succession, among effects; but these must in all cases be a mere result either of the identity or of the co-existence of their causes: if the causes did not co-exist, neither could the effects. And these causes being also effects of prior causes, and these of others, until we reach the primeval causes, it follows that (except in the case of effects which can be traced immediately or remotely to one and the same cause) the co-existences of phenomena can in no case be universal, unless the co-existences of the primeval causes to which the effects are ultimately traceable can be reduced to a universal law: but we have seen that they can not. There are, accordingly, no original and independent, in other words no unconditional, uniformities of co-existence, between effects of different causes; if they co-exist, it is only because the causes have casually co-existed. The only independent and unconditional co-existences which are sufficiently invariable to have any claim to the character of laws, are between different and mutually independent effects of the same cause; in other words, between different properties of the same natural agent. This portion of the Laws of Nature will be treated of in the latter part of the present Book, under the name of the Specific Properties of Kinds.

§ 10. Since the first publication of the present treatise, the sciences of physical nature have made a great advance in generalization, through the doctrine known as the Conservation or Persistence of Force. This imposing edifice of theory, the building and laying out of which has for some time been the principal occupation of the most systematic minds among physical inquirers, consists of two stages: one, of ascertained fact, the other containing a large element of hypothesis.

To begin with the first. It is proved by numerous facts, both natural and of artificial production, that agencies which had been regarded as distinct and independent sources of force—heat, electricity, chemical action, nervous and muscular action, momentum of moving bodies—are interchangeable, in definite and fixed quantities, with one another. It had long been known that these dissimilar phenomena had the power, under certain conditions, of producing one another: what is new in the theory is a more accurate estimation of what this production consists in. What happens is, that the whole or part of the one kind of phenomena disappears, and is replaced by phenomena of one of the other descriptions, and that there is an equivalence in quantity between the phenomena that have disappeared and those which have been produced, insomuch that if the process be reversed, the very same quantity which had disappeared will re-appear, without increase or diminution. Thus the amount of heat which will raise the temperature of a pound of water one degree of the thermometer, will, if expended, say in the expansion of steam, lift a weight of 772 pounds one