Page:System of Logic.djvu/314

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
308
INDUCTION.

"Upon these methods, the obvious thing to remark is, that they take for granted the very thing which is most difficult to discover, the reduction of the phenomena to formulæ such as are here presented to us. When we have any set of complex facts offered to us; for instance, those which were offered in the cases of discovery which I have mentioned—the facts of the planetary paths, of falling bodies, of refracted rays, of cosmical motions, of chemical analysis; and when, in any of these cases, we would discover the law of nature which governs them, or, if any one chooses so to term it, the feature in which all the cases agree, where are we to look for our A, B, C, and a, b, c? Nature does not present to us the cases in this form; and how are we to reduce them to this form? You say when we find the combination of A B C with a b c and A B D with a b d, then we may draw our inference. Granted; but when and where are we to find such combinations? Even now that the discoveries are made, who will point out to us what are the A, B, C, and a, b, c, elements of the cases which have just been enumerated? Who will tell us which of the methods of inquiry those historically real and successful inquiries exemplify? Who will carry these formulæ through the history of the sciences, as they have really grown up, and show us that these four methods have been operative in their formation; or that any light is thrown upon the steps of their progress by reference to these formulæ?"

He adds that, in this work, the methods have not been applied "to a large body of conspicuous and undoubted examples of discovery, extending along the whole history of science;" which ought to have been done in order that the methods might be shown to possess the "advantage" (which he claims as belonging to his own) of being those "by which all great discoveries in science have really been made."—(P. 277.)

There is a striking similarity between the objections here made against Canons of Induction, and what was alleged, in the last century, by as able men as Dr. Whewell, against the acknowledged Canon of Ratiocination. Those who protested against the Aristotelian Logic said of the Syllogism, what Dr. Whewell says of the Inductive Methods, that it "takes for granted the very thing which is most difficult to discover, the reduction of the argument to formulæ such as are here presented to us." The grand difficulty, they said, is to obtain your syllogism, not to judge of its correctness when obtained. On the matter of fact, both they and Dr. Whewell are right. The greatest difficulty in both cases is, first, that of obtaining the evidence, and next, of reducing it to the form which tests its conclusiveness. But if we try to reduce it without knowing what it is to be reduced to, we are not likely to make much progress. It is a more difficult thing to solve a geometrical problem, than to judge whether a proposed solution is correct: but if people were not able to judge of the solution when found, they would have little chance of finding it. And it can not be pretended that to judge of an induction when found is perfectly easy, is a thing for which aids and instruments are superfluous; for erroneous inductions, false inferences from experience, are quite as common, on some subjects much commoner than true ones. The business of Inductive Logic is to provide rules and models (such as the Syllogism and its rules are for ratiocination) to which if inductive arguments conform, those arguments are conclusive, and not otherwise. This is what the Four Methods profess to be, and what I believe they are universally considered to be by experimental philosophers, who had practiced all of them long before any one sought to reduce the practice to theory.