Page:System of Logic.djvu/385

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
OF THE CALCULATION OF CHANCES.
379

CHAPTER XVIII.

Of The Calculation Of Chances.

§ 1. "Probability," says Laplace,[1] "has reference partly to our ignorance, partly to our knowledge. We know that among three or more events, one, and only one, must happen; but there is nothing leading us to believe that any one of them will happen rather than the others. In this state of indecision, it is impossible for us to pronounce with certainty on their occurrence. It is, however, probable that any one of these events, selected at pleasure, will not take place; because we perceive several cases, all equally possible, which exclude its occurrence, and only one which favors it.

"The theory of chances consists in reducing all events of the same kind to a certain number of cases equally possible, that is, such that we are equally undecided as to their existence; and in determining the number of these cases which are favorable to the event of which the probability is sought. The ratio of that number to the number of all the possible cases is the measure of the probability; which is thus a fraction, having for its numerator the number of cases favorable to the event, and for its denominator the number of all the cases which are possible."

To a calculation of chances, then, according to Laplace, two things are necessary; we must know that of several events some one will certainly happen, and no more than one; and we must not know, nor have any reason to expect, that it will be one of these events rather than another. It has been contended that these are not the only requisites, and that Laplace has overlooked, in the general theoretical statement, a necessary part of the foundation of the doctrine of chances. To be able (it has been said) to pronounce two events equally probable, it is not enough that we should know that one or the other must happen, and should have no grounds for conjecturing which. Experience must have shown that the two events are of equally frequent occurrence. Why, in tossing up a half-penny, do we reckon it equally probable that we shall throw cross or pile? Because we know that in any great number of throws, cross and pile are thrown about equally often; and that the more throws we make, the more nearly the equality is perfect. We may know this if we please by actual experiment, or by the daily experience which life affords of events of the same general character, or, deductively, from the effect of mechanical laws on a symmetrical body acted upon by forces varying indefinitely in quantity and direction. We may know it, in short, either by specific experience, or on the evidence of our general knowledge of nature. But, in one way or the other, we must know it, to justify us in calling the two events equally probable; and if we knew it not, we should proceed as much at hap-hazard in staking equal sums on the result, as in laying odds.

This view of the subject was taken in the first edition of the present work; but I have since become convinced that the theory of chances, as

  1. Essai Philosophique sur les Probabilités, fifth Paris edition, p. 7.