Page:System of Logic.djvu/440

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
434
INDUCTION.

laws are expressions, are of a kind peculiarly accessible to the senses, and suggesting eminently distinct images to the fancy. That geometry is a strictly physical science would doubtless have been recognized in all ages, had it not been for the illusions produced by two circumstances. One of these is the characteristic property, already noticed, of the facts of geometry, that they may be collected from our ideas or mental pictures of objects as effectually as from the objects themselves. The other is, the demonstrative character of geometrical truths; which was at one time supposed to constitute a radical distinction between them and physical truths; the latter, as resting on merely probable evidence, being deemed essentially uncertain and unprecise. The advance of knowledge has, however, made it manifest that physical science, in its better understood branches, is quite as demonstrative as geometry. The task of deducing its details from a few comparatively simple principles is found to be any thing but the impossibility it was once supposed to be; and the notion of the superior certainty of geometry is an illusion, arising from the ancient prejudice which, in that science, mistakes the ideal data from which we reason, for a peculiar class of realities, while the corresponding ideal data of any deductive physical science are recognized as what they really are, hypotheses.

Every theorem in geometry is a law of external nature, and might have been ascertained by generalizing from observation and experiment, which in this case resolve themselves into comparison and measurement. But it was found practicable, and, being practicable, was desirable, to deduce these truths by ratiocination from a small number of general laws of nature, the certainty and universality of which are obvious to the most careless observer, and which compose the first principles and ultimate premises of the science. Among these general laws must be included the same two which we have noticed as ultimate principles of the Science of Number also, and which are applicable to every description of quantity; viz., The sums of equals are equal, and Things which are equal to the same thing are equal to one another; the latter of which may be expressed in a manner more suggestive of the inexhaustible multitude of its consequences, by the following terms: Whatever is equal to any one of a number of equal magnitudes, is equal to any other of them. To these two must be added, in geometry, a third law of equality, namely, that lines, surfaces, or solid spaces, which can be so applied to one another as to coincide, are equal. Some writers have asserted that this law of nature is a mere verbal definition; that the expression "equal magnitudes" means nothing but magnitudes which can be so applied to one another as to coincide. But in this opinion I can not agree. The equality of two geometrical magnitudes can not differ fundamentally in its nature from the equality of two weights, two degrees of heat, or two portions of duration, to none of which would this definition of equality be suitable. None of these things can be so applied to one another as to coincide, yet we perfectly understand what we mean when we call them equal. Things are equal in magnitude, as things are equal in weight, when they are felt to be exactly similar in respect of the attribute in which we compare them: and the application of the objects to each other in the one case, like the balancing them with a pair of scales in the other, is but a mode of bringing them into a position in which our senses can recognize deficiencies of exact resemblance that would otherwise escape our notice.

Along with these three general principles or axioms, the remainder of the premises of geometry consists of the so-called definitions: that is to