one are often represented by closely allied families, genera and species peculiar to the other.
Geology.
5. The distribution of the organic world in time is very similar to its present distribution in space.
6. Most of the larger and some small groups extend through several geological periods.
7, In each period, however, there are peculiar groups, found nowhere else, and extending through one or several formations.
8. Species of one genus, or genera of one family occurring in the same geological time are more closely allied than those separated in time.
9. As generally in geography no species or genus occurs in two very distant localities without being also found in intermediate places, so in geology the life of a species or genus has not been interrupted. In other words, no group or species has come into existence twice.
10. The following law may be deduced from thesis facts :—Every species has come into existence coincident both in space and time with a pre-existing closely allied species.
This law agrees with, explains and illustrates all the facts connected with the following branches of the subject :—1st. The system of natural affinities. 2nd. The distribution of animals and plants in space. 3rd. The same in time, including all the phenomena of representative groups, and those which Professor Forbes supposed to manifest polarity. 4th. The phenomena of rudimentary organs. We will briefly endeavour to show its bearing upon each of these.
If the law above enunciated be true, it follows that the natural series of affinities will also represent the order in which the several species came into existence, each one having had for its immediate antitype a closely allied species existing at the time of its origin. It is evidently possible that two or three distinct species may have had a common antitype, and that each of these may again have become the antitypes from which other closely allied species were created. The effect of this would be, that so long as each species has had but one new species formed on its model, the line of affinities will be simple, and may be represented by placing the several species in direct succession in a straight line. But if two or more species have been independently formed on the plan of a common antitype, then the series of affinities will be compound, and can only be represented by a forked or many-branched line. Now, all attempts at a Natural classification and arrangement of organic beings show, that both