Page:The Cost of Delaying Action to Stem Climate Change.pdf/18

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

of delay are particularly high for scenarios with the most stringent target and the longest delay lengths.

Table 1 presents the results of multiple regression analysis that summarizes how various factors affect predictions from the included studies, holding constant the other variables included in the regression. The dependent variable is the cost of delay, measured as the percentage increase relative to the comparable no-delay scenario, and the length of delay is measured in decades. Specifications (1) and (2) correspond to Figures 2 and 3, respectively. Each subsequent specification includes the length of the delay in years, an indicator variable for a partial delay scenario, and the target CO2e concentration. In addition to the coefficients shown, specification (4) includes model fixed effects, which control for systematic differences across models, and each specification other than column (1) includes an intercept.

The results in Table 1 quantify the two main findings mentioned above. The coefficients in column (3) indicate that, looking across these studies, a one decade increase in delay length is on average associated with a 41 percent increase in mitigation cost relative to the no-delay scenario. This regression does not control for possible differences in baseline costs across the different models, however, so column (4) reports a variant that includes an additional set of binary variables indicating the model used (“model fixed effects”). Including model fixed effects increases the delay cost to 56 percent per decade. When the cost of a delay is estimated separately for different concentration target bins (column (5)), delay is more costly the more ambitious is the concentration target. But even for the least ambitious target – a CO2e concentration exceeding 600 ppm – delay is estimated to increase costs by approximately 24 percent per decade. Because of the relatively small number of cases (58 paired comparisons), which are further reduced when delay is estimated within target bins, the standard errors are large, especially for the least ambitious scenarios, so for an overall estimate of the delay cost we do not differentiate between the different targets. While the regression in column (4) desirably controls for differences across models, other (unreported) specifications that handle

17