Page:The Cost of Delaying Action to Stem Climate Change.pdf/23

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

Abrupt Impacts of Climate Change: Anticipating Surprises

The National Research Council’s 2013 report, Abrupt Impacts of Climate Change: Anticipating Surprises, discusses a number of abrupt climate changes with potentially severe consequences. These events include:

  • Late-summer Arctic sea ice disappearance: Strong trends of accelerating late-summer sea ice loss have been observed in the Arctic. The melting of Arctic sea ice comprises a positive feedback loop, as less ice means more sunlight will be absorbed into the dark ocean, causing further warming.
  • Sea level rise (SLR) from destabilization of West Antarctic ice sheets (WAIS): The WAIS represents a potential SLR of 3-4 meters as well as coastal inundation and stronger storm surges. Much remains unknown of the physical processes at the ice-ocean frontier. However, two recent studies (Joughin, Smith, and Medley 2014, Rignot et. al. 2014) report evidence that irreversible WAIS destabilization has already started.
  • Sea level rise from other ice sheets melting: Losing all other ice sheets, including Greenland, may cause SLR of up to 60 meters as well as coastal inundation and stronger storm surges. Melting of the Greenland ice sheet alone may induce SLR of 7m, but it is not expected to destabilize rapidly within this century.
  • Disruption to Atlantic Meridional Overturning Circulation (AMOC): Potential disruptions to the AMOC may disrupt local marine ecosystems and shift tropical rain belts southward. Although current models do not indicate that an abrupt shift in the AMOC is likely within the century, the deep ocean remains understudied with respect to measures necessary for AMOC calculations.
  • Decrease in ocean oxygen: As the solubility of gases decrease with rising temperature, a warming of the ocean will decrease the oxygen content in the surface ocean and expand existing Oxygen Minimum Zones. This will pose a threat to aerobic marine life as well as release nitrous oxide—a potent GHG—as a byproduct of microbial processes. The NRC study assesses a moderate likelihood of an abrupt increase in oxygen minimum zones in this century.
  • Increasing release of carbon stores in soils and permafrost: Northern permafrost contains enough carbon to trigger a positive feedback response to warming temperatures. With an estimated stock of 1700-1800 Gt, the permafrost carbon stock could amplify considerably human-induced climate change. Small trends in soil carbon releases have been already observed.
  • Increasing release of methane from ocean methane hydrates: This is a particularly potent long-term risk due to hydrate deposits through changes in ocean water temperature; the likely timescale for the physical processes involved spans centuries, however, and there is low risk this century.

22