Page:The Foundations of Science (1913).djvu/325

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

to t represents the duration of the transmission, and to verify it, station B sends in its turn a signal when its clock marks 0; then station A should perceive it when its clock marks t. The timepieces are then adjusted.

And in fact they mark the same hour at the same physical instant, but on the one condition, that the two stations are fixed. Otherwise the duration of the transmission will not be the same in the two senses, since the station A, for example, moves forward to meet the optical perturbation emanating from B, whereas the station B flees before the perturbation emanating from A. The watches adjusted in that way will not mark, therefore, the true time; they will mark what may be called the local time, so that one of them will be slow of the other. It matters little, since we have no means of perceiving it. All the phenomena which happen at A, for example, will be late, but all will be equally so, and the observer will not perceive it, since his watch is slow; so, as the principle of relativity requires, he will have no means of knowing whether he is at rest or in absolute motion.

Unhappily, that does not suffice, and complementary hypotheses are necessary; it is necessary to admit that bodies in motion undergo a uniform contraction in the sense of the motion. One of the diameters of the earth, for example, is shrunk by one two-hundred-millionth in consequence of our planet's motion, while the other diameter retains its normal length. Thus the last little differences are compensated. And then, there is still the hypothesis about forces. Forces, whatever be their origin, gravity as well as elasticity, would be reduced in a certain proportion in a world animated by a uniform translation; or, rather, this would happen for the components perpendicular to the translation; the components parallel would not change. Resume, then, our example of two electrified bodies; these bodies repel each other, but at the same time if all is carried along in a uniform translation, they are equivalent to two parallel currents of the same sense which attract each other. This electrodynamic attraction diminishes, therefore, the electrostatic repulsion, and the total repulsion is feebler than if the two bodies were at rest. But since to measure this repulsion we must balance it by another force, and all these other forces are reduced in the same proportion,