Page:The Foundations of Science (1913).djvu/329

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

agitating the ether; to put them in motion it is necessary to overcome a double inertia, that of the molecule itself and that of the ether. The total or apparent mass that one measures is composed, therefore, of two parts: the real or mechanical mass of the molecule and the electrodynamic mass representing the inertia of the ether.

The calculations of Abraham and the experiments of Kaufmann have then shown that the mechanical mass, properly so called, is null, and that the mass of the electrons, or, at least, of the negative electrons, is of exclusively electrodynamic origin. This is what forces us to change the definition of mass; we can not any longer distinguish mechanical mass and electrodynamic mass, since then the first would vanish; there is no mass other than electrodynamic inertia. But in this case the mass can no longer be constant; it augments with the velocity, and it even depends on the direction, and a body animated by a notable velocity will not oppose the same inertia to the forces which tend to deflect it from its route, as to those which tend to accelerate or to retard its progress.

There is still a resource; the ultimate elements of bodies are electrons, some charged negatively, the others charged positively. The negative electrons have no mass, this is understood; but the positive electrons, from the little we know of them, seem much greater. Perhaps they have, besides their electrodynamic mass, a true mechanical mass. The real mass of a body would, then, be the sum of the mechanical masses of its positive electrons, the negative electrons not counting; mass so defined might still be constant.

Alas! this resource also evades us. Recall what we have said of the principle of relativity and of the efforts made to save it. And it is not merely a principle which it is a question of saving, it is the indubitable results of the experiments of Michelson.

Well, as was above seen, Lorentz, to account for these results, was obliged to suppose that all forces, whatever their origin, were reduced in the same proportion in a medium animated by a uniform translation; this is not sufficient; it is not enough that this take place for the real forces, it must also be the same for the forces of inertia; it is therefore necessary, he says, that the