Page:The Foundations of Science (1913).djvu/522

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
504
SCIENCE AND METHOD

minute, but which is, it would seem, in conformity with the theory.

The same effects of the Maxwell-Bartholi pressure are forecast likewise by the theory of Hertz of which we have before spoken, and by that of Lorentz. But there is a difference. Suppose that the energy, under the form of light, for example, proceeds from a luminous source to any body through a transparent medium. The Maxwell-Bartholi pressure will act, not alone upon the source at the departure, and on the body lit up at the arrival, but upon the matter of the transparent medium which it traverses. At the moment when the luminous wave reaches a new region of this medium, this pressure will push forward the matter there distributed and will put it back when the wave leaves this region. So that the recoil of the source has for counterpart the forward movement of the transparent matter which is in contact with this source; a little later, the recoil of this same matter has for counterpart the forward movement of the transparent matter which lies a little further on, and so on.

Only, is the compensation perfect? Is the action of the Maxwell-Bartholi pressure upon the matter of the transparent medium equal to its reaction upon the source, and that, whatever be this matter? Or is this action by so much the less as the medium is less refractive and more rarefied, becoming null in the void?

If we admit the theory of Hertz, who regards matter as mechanically bound to the ether, so that the ether may be entirely carried along by matter, it would be necessary to answer yes to the first question and no to the second.

There would then be perfect compensation, as required by the principle of the equality of action and reaction, even in the least refractive media, even in the air, even in the interplanetary void, where it would suffice to suppose a residue of matter, however subtile. If on the contrary we admit the theory of Lorentz, the compensation, always imperfect, is insensible in the air and becomes null in the void.

But we have seen above that Fizeau’s experiment does not permit of our retaining the theory of Hertz; it is necessary therefore