Page:The Foundations of Science (1913).djvu/538

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

propagation can be only that of light, and we are thus led, for the resistance of the medium, to an inadmissihle figure. Besides, if the light is all reflected, the effect is null, just as in the hypothesis of the perfectly elastic corpuscles.

That there should be attraction, it is necessary that the light be partially absorbed; but then there is production of heat. The calculations do not differ essentially from those made in the ordinary theory of Lesage, and the result retains the same fantastic character.

On the other hand, attraction is not absorbed by the body it traverses, or hardly at all; it is not so with the light we know. Light which would produce the Newtonian attraction would have to be considerably different from ordinary light and be, for example, of very short wave length. This does not count that, if our eyes were sensible of this light, the whole heavens should appear to us much more brilliant than the sun, so that the son would seem to us to stand out in black, otherwise the sun would repel us instead of attracting us. For all these reasons, light which would permit of the explanation of attraction would be much more like Röntgen rays than like ordinary light.

And besides, the X-rays would not suffice; however penetrating they may seem to us, they could not pass through the whole earth; it would be necessary therefore to imagine X'-rays much more penetrating than the ordinary X-rays. Moreover a part of the energy of these X'-rays would have to be destroyed, otherwise there would be no attraction. If you do not wish it transformed into heat, which would lead to an enormous heat production, you must suppose it radiated in every direction under the form of secondary rays, which might be called X" and which would have to be much more penetrating still than the X'-rays, otherwise they would in their turn derange the phenomena of attraction.

Such are the complicated hypotheses to which we are led when we try to give life to the theory of Lesage.

But all we have said presupposes the ordinary laws of mechanics.

Will things go better if we admit the new dynamics? And first, can we conserve the principles of relativity? Let us give at