Page:The Liquefaction of Gases.djvu/68

From Wikisource
Jump to navigation Jump to search
This page has been validated.
64
Faraday.

the pressures at low temperatures are too great to allow the condensed liquid to be considered as one uniform body, and the form of the curve at the higher pressures is quite enough to prove that no ether was present either in this or the former fluids. On permitting the liquid in the tube to expand into gas, and treating 100 parts of that gas with oil of turpentine, eighty-nine parts were dissolved, and eleven parts remained insoluble. There can be no doubt that the presence of this latter substance, soluble as it is under pressure in the more condensable portions, is the cause of the irregularity of the curve, and the too high pressure at the lower temperatures.

The ethereal solution of olefiant gas being mixed with eight or nine times its volume of water, dissolved and gradually minute bubbles of gas appeared, the separation of which was hastened by a little heat. In this way about half the gas dissolved was re-obtained, and burnt like very rich olefiant gas. One volume of the alcoholic solution, with two volumes of water, gave very little appearance of separating gas. Even the application of heat did not at first cause the separation, but gradually about half the dissolved olefiant gas was liberated.

The separation of the dissolved gas by water, heat, or change of pressure from its solutions, will evidently supply means of procuring olefiant gas in a greater state of purity than heretofore; the power of forming these solutions will also very much assist in the correct analysis of mixtures of hydrocarbons. I find that light carburetted hydrogen is hardly sensibly soluble in alcohol or ether, and in oil of turpentine the proportion dissolved is not probably 115th the volume of the fluid employed; but the further development of these points I must leave for the present.

Carbonic acid.—This liquid may be retained in glass tubes furnished with cemented caps, and closed by plugs