Page:The Meaning of Relativity - Albert Einstein (1922).djvu/43

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
SPECIAL RELATIVITY
31

note that this definition of time relates only to the inertial system , since we have used a system of clocks at rest relatively to . The assumption which was made in the pre-relativity physics of the absolute character of time (i.e. the independence of time of the choice of the inertial system) does not follow at all from this definition.

The theory of relativity is often criticized for giving, without justification, a central theoretical rôle to the propagation of light, in that it founds the concept of time upon the law of propagation of light. The situation, however, is somewhat as follows. In order to give physical significance to the concept of time, processes of some kind are required which enable relations to be established between different places. It is immaterial what kind of processes one chooses for such a definition of time. It is advantageous, however, for the theory, to choose only those processes concerning which we know something certain. This holds for the propagation of light in vacuo in a higher degree than for any other process which could be considered, thanks to the investigations of Maxwell and H. A. Lorentz.

From all of these considerations, space and time data have a physically real, and not a mere fictitious, significance; in particular this holds for all the relations in which co-ordinates and time enter, e.g. the relations (21). There is, therefore, sense in asking whether those equations are true or not, as well as in asking what the true equations of transformation are by which we pass from one inertial system to another, moving relatively to it. It may be shown that this is uniquely