Page:The National geographic magazine, volume 1.djvu/266

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
210
National Geographic Magazine.

transverse gap, EB, in the next higher hard bed, and there rejoining the diminished representative or survivor of the original axial or synclinal stream, GB.

17. Terminology of rivers changed by adjustment.—A special terminology is needed for easy reference to the several parts of the streams concerned in such an adjustment. Let AB and CD, fig. 14, be streams of unequal size cutting gaps, H and G, in a ridge that lies transverse to their course. CD being larger than AB will deepen its gap faster. Of two subsequent streams, JE and JF, growing on the up-stream side of the ridge, JE will have the steeper slope, because it joins the deeper master-stream. The divide, J, will therefore be driven towards AB, and if all the conditions concerned conspire favorably, JE will at last tap AB at F, and lead the upper part, AF, out by the line FEGD, fig. 15,

Fig. 14.
Fig. 14.

Fig. 14.

Fig. 15.
Fig. 15.

Fig. 15.

through the deeper gap, G. We may then say that JE becomes the divertor of AF, which is diverted; and when the process is completed, by the transfer of the divide from J, on the soft rocks, to a stable location, H, on the hard rocks, there will be a short inverted stream, HF; while HB is the remaining beheaded portion of the original stream, AB, and the water-gap of AB becomes a wind-gap, H. It is very desirable that geographic exploration should discover examples of the process of adjustment in its several stages. The preparatory stage is easily recognized by the difference in the size of the two main streams, the difference in the depth of their gaps, and the unsymmetrical position of the divide, J. The very brief stage of transition gives us the rare examples of bifurcating streams. For a short time after capture of the diverted stream by the divertor, the new divide will lie between F and H, in an unstable position, the duration of this time depending on the energy of the process of capture.