Page:The Urantia Book, 1st Edition.djvu/544

From Wikisource
Jump to navigation Jump to search
This page has been validated.
478
The Local Universe

In Orvonton it has never been possible naturally to assemble over one hundred orbital electrons in one atomic system. When one hundred and one have been artificially introduced into the orbital field, the result has always been the instantaneous disruption of the central proton with the wild dispersion of the electrons and other liberated energies.


While atoms may contain from one to one hundred orbital electrons, only the outer ten electrons of the larger atoms revolve about the central nucleus as distinct and discrete bodies, intactly and compactly swinging around on precise and definite orbits. The thirty electrons nearest the center are difficult of observation or detection as separate and organized bodies. This same comparative ratio of electronic behavior in relation to nuclear proximity obtains in all atoms regardless of the number of electrons embraced. The nearer the nucleus, the less there is of electronic individuality. The wavelike energy extension of an electron may so spread out as to occupy the whole of the lesser atomic orbits; especially is this true of the electrons nearest the atomic nucleus.

The thirty innermost orbital electrons have individuality, but their energy systems tend to intermingle, extending from electron to electron and well-nigh from orbit to orbit. The next thirty electrons constitute the second family, or energy zone, and are of advancing individuality, bodies of matter exerting a more complete control over their attendant energy systems. The next thirty electrons, the third energy zone, are still more individualized and circulate in more distinct and definite orbits. The last ten electrons, present in only the ten heaviest elements, are possessed of the dignity of independence and are, therefore, able to escape more or less freely from the control of the mother nucleus. With a minimum variation in temperature and pressure, the members of this fourth and outermost group of electrons will escape from the grasp of the central nucleus, as is illustrated by the spontaneous disruption of uranium and kindred elements.

The first twenty-seven atoms, those containing from one to twenty-seven orbital electrons, are more easy of comprehension than the rest. From twenty-eight upward we encounter more and more of the unpredictability of the supposed presence of the Unqualified Absolute. But some of this electronic unpredictability is due to differential ultimatonic axial revolutionary velocities and to the unexplained "huddling" proclivity of ultimatons. Other influences—physical, electrical, magnetic, and gravitational—also operate to produce variable electronic behavior. Atoms therefore are similar to persons as to predictability. Statisticians may announce laws governing a large number of either atoms or persons but not for a single individual atom or person.


8. ATOMIC COHESION

While gravity is one of several factors concerned in holding together a tiny atomic energy system, there is also present in and among these basic physical units a powerful and unknown energy, the secret of their basic constitution and ultimate behavior, a force which remains to be discovered on Urantia. This universal influence permeates all the space embraced within this tiny energy organization.

The interelectronic space of an atom is not empty. Throughout an atom this interelectronic space is activated by wavelike manifestations which are perfectly