Page:The principle of relativity (1920).djvu/24

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

of the earth. Uniform relative motion of ether and matter could not be detected with the help of dynamical laws. According to Einstein neither could it be detected with the help of optical or electromagnetic experiments. Thus the Einsteinian Principle of Relativity asserts that all physical laws are independent of the 'absolute' velocity of an observer.

For different systems, the form of all physical laws is conserved. If we chose the velocity of light[1] to be the fundamental unit of measurement for all observers (that is, assume the constancy of the velocity of light in all systems) we can establish a metric "one-one" correspondence between any two observed systems, such correspondence depending only the relative velocity of the two systems. Einstein's Relativity is thus merely the consistent logical application of the well known physical principle that we can know nothing but relative motion. In this sense it is a further extension of Newtonian Relativity.

On this interpretation, the Lorentz-Fitzgerald contraction and "local time" lose their arbitrary character. Space and time as measured by two different observers are naturally diverse, and the difference depends only on their relative motion. Both are equally valid; they are merely different descriptions of the same physical reality. This is essentially the point of view adopted by Minkowski. He considers time itself to be one of the co-ordinate axes, and in his four-*dimensional world, that is in the space-time reality, relative motion is reduced to a rotation of the axes of reference. Thus, the diversity in the measurement of lengths and temporal rates is merely due to the static difference in the "frame-work" of the different observers.

The above theory of Relativity absorbed practically the whole of the electromagnetic theory based on the

  1. See Notes 9 and 12.