Page:The principle of relativity (1920).djvu/245

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

Note 6. Field Equations in Minkowski's Form.

Equations (i) and (ii) become when expanded into Cartesians:—

[part]m_z/[part]y - [part]m_y/[part]z - [part]e_x/[part]τ = ρυ_x }
[part]m_x/[part]z - [part]m_z/[part]x - [part]e_y/[part]τ = ρυ_y } . . . (1·1)
[part]m_y/[part]x - [part]m_x/[part]y - [part]e_z/[part]τ = ρυ_z }

and [part]e_x/[part]x + [part]e_y/[part]y + [part]e_z/[part]z = ρ (2·1)

Substituting x_1, x_2, x_3, x_4 and x, y, z, and iτ; and rho_1, ρ_2, ρ_3, ρ_4 for ρυ_x, ρυ_y, ρυ_z, iρ, where i = [sqrt](-1).

We get,

[part]m_z/[part]x_2 - [part]m_y/[part]x_3 - i([part]e_x/[part]x_4) = ρυ_x{ = ρ_1 }
 - [part]m_z/[part]x_1 + [part]m_x/[part]x_3 - i([part]e_y/[part]x_4) = ρυ_y = ρ_2 } . . . (1·2)
[part]m_y/[part]x_1 - [part]m_x/[part]x_2 - i([part]e_z/[part]x_4) = ρυ_z{} = ρ_3 }

and multiplying (2·1) by i we get

[part]ie_x/[part]x_1 + [part]ie_y/[part]x_2 + [part]ie_z/[part]x_3 = iρ = ρ_4 . . . . . . (2·2)

Now substitute

m_x = [function]_{2 3} = -[function]_{3 2} and ie_x = [function]_{4 1} = -[function]_{1 4}
m_y = [function]_{3 1} = -[function]_{1 3} ie_y = [function]_{4 2} = -[function]_{2 4}
m_z = [function]_{1 2} = -[function]_{2 1} ie_z = [function]_{4 3} = -[function]_{3 4}