Page:The principle of relativity (1920).djvu/250

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.

Complement of φ. Then we have the following relations between the components of the two plane:—

φ_{y z}^* = φ_{x l}, φ_{z x}^* = φ_{y l}, φ_{x y}^* = φ_{z l} φ_{z l}^* = φ_{y x} . . .

The proof of these assertions is as follows. Let u^*, v^* be the four vectors defining φ^*. Then we have the following relations:—

u_{x}^* u_{x} + u_{y}^* u_{y} + u_{z}^* u_{z} + u_{l}^* u_{l} = 0

u_{x}^* v_{x} + u_{y}^* v_{y} + u_{z}^* v_{z} + u_{l}^* v_{l} = 0

v_{x}^* u_{x} + v_{y}^* u_{y} + v_{z}^* u_{z} + v_{l}^* u_{l} = 0

v_{x}^* v_{x} + v_{y}^* v_{y} + v_{z}^* v_{z} + v_{l}^* v_{l} = 0

If we multiply these equations by v_{l}, u_{l}, v_{s}, and subtract the second from the first, the fourth from the third we obtain

u_{x}^* φ_{x l} + u_{y}^* φ_{y l} + u_{z}^* φ_{z l} = 0

v_{x}^* φ_{z l} + v_{y}^* φ_{y l} + v_{z}^* φ_{z l} = 0

multiplying these equations by v_{x}^* . u_{x}^*, or by v_{y}^* . u_{y}^*. we obtain

φ_{x z}^* φ_{x l} + φ_{y z}^* φ_{y l} = 0 and φ_{x y}^* φ_{x l} + φ_{z x}^* φ_{z l} = 0

from which we have

φ_{y z}^* : φ_{x y}^* : φ_{z x}^* = φ_{x l} : φ_{z l} : φ_{y l}

In a corresponding way we have

φ_{y z} : φ_{x y} : φ_{z x} = φ_{x l}^* : φ_{z l}^* : φ_{y l}^*.

ie.

φ_{i k}^* = λφ(_{i k})

when the subscript (ik) denotes the component of φ in the plane contained by the lines other than (ik). Therefore the theorem is proved.

We have

(φ φ*) = φ_{y z} φ_{y z}^* + . . .

= 2 (φ_{y z} φ_{z l} + . . .)

= 0