Page:The theory of relativity and its influence on scientific thought.djvu/23

From Wikisource
Jump to navigation Jump to search
This page has been validated.
RELATIVITY
19

ticular direction—the instantaneous states—which we have so unnecessarily introduced in our customary outlook. When this stratification is ignored we are enabled to see the processes in their simplest aspect, though not, of course, in their most familiar aspect. We must distinguish between simplicity and familiarity; a pig may be most familiar to us in the form of rashers, but the unstratified pig is a simpler object of study to the biologist who wishes to understand how the animal functions.

I will conclude this part of the argument with an experimental application which illustrates the power of Einstein's method. Much study has of late been given to electrons moving with very high speeds; for example, the β particles shot off from radioactive substances are negative electrons which sometimes attain speeds of 100,000 miles a second. It is found by experiment that the rapid motion produces an increase of mass of these particles. I want to show that the theory of relativity gives a very simple explanation of just how this increase of mass occurs. But I must first remark that an explanation had been previously given which had generally been accepted as satisfactory. The phenomenon was actually predicted by J. J. Thomson before relativity was thought of; because, assuming that the mass of a β particle is of electrical origin, an application of Maxwell's equations shows that it ought to increase with velocity. But the precise law of increase cannot be predicted on this basis, since various plausible assumptions lead to slightly different results. Moreover, Maxwell's equations are after all only empirical laws, with a mystery of their own; it was a notable advance to connect the change of mass at high speeds with other phenomena whose strangeness has disappeared by long familiarity, but there is still scope for a more far-reaching explana-