Page:Wonderful Balloon Ascents, 1870.djvu/40

From Wikisource
Jump to navigation Jump to search
This page has been validated.

CHAPTER III.

THE THEORY OF BALLOONS.

A certain proposition in physics, known as the "Principle of Archimedes," runs to the following effect:—"Every body plunged into a liquid loses a portion of its weight equal to the weight of the fluid which it displaces." Everybody has verified this principle, and knows that objects are much lighter in water than out of it; a body plunged into water being acted upon by two forces—its own weight, which tends to sink it, and resistance from below, which tends to bear it up. But this principle applies to gas as well as to liquids—to air as well as to water. When we weigh a body in the air, we do not find its absolute weight, but that weight minus the weight of the air which the body displaces. In order to know the exact weight of an object, it would be necessary to weigh it in a vacuum.

If an object thrown into the air is heavier than the air which it displaces, it descends, and falls upon the earth; if it is of equal weight, it floats without rising or falling; if it is lighter, it rises until it comes to a stratum of air of less weight or density than itself. We all know, of course, that the higher you rise from the earth the density of the air diminishes. The stratum of air that lies upon the surface of the earth is the heaviest, because it supports the pressure of all the other strata that lie above. Thus the lightest strata are the highest.

The principle of the construction of balloons is, there-