Popular Science Monthly/Volume 49/May 1896/Minor Paragraphs

From Wikisource
Jump to navigation Jump to search


In a recent report to the French Academy of Medicine, M. Henri Monod says that from January, 1895, since the knowledge of antidiphtheritic serum and its uses has been extensively diffused throughout France, the statistics have shown a marked diminution in the mortality from the disease. In the population of one hundred and eight cities in France, each having more than twenty thousand inhabitants (the only places from which the reports are sent to the central administration), during the first six months of the seven years preceding 1895—that is, from 1888 to 1894—the average number of deaths was twenty-six hundred and twenty-seven. During the first six months of 1895 the diminution was 65·6 per cent. This diminution is not simply continuous, but is steadily increasing, as is proved by statistics from month to month. In a little pamphlet on this subject by Dr. Welch, of the Smithsonian Institution, he says that "the study so far of the results of the treatment of over seven thousand cases of diphtheria by antitoxine demonstrates beyond all reasonable doubt that antidiphtheritic serum is a specific curative agent for diphtheria, surpassing in its efficacy all other known methods of treatment for this disease," while "the essential harmlessness of the serum has been demonstrated by over a hundred thousand injections."

An accident of considerable scientific interest recently resulted m the photographing of a meteor. On November 23d last, at about ten minutes past twelve at night, Mr. C. P. Butler, of Knightsbridge, with the intention of focusing and testing the field of a new lens, placed a quarter-plate camera on the window sill, pointed it roughly at the region near the boundaries of Perseus, Andromeda, and Aries, and exposed it for about ten minutes. Upon developing the plate, the track of a meteor was the first impression to be perceived. Confirmation of the occurrence of the meteor is given by its having been observed from the South Kensington Observatory, both the time of the fall and the estimated region of its path being identical with the above observations.

M. Berthelot, says Industries and Iron, with the view of avoiding the inaccuracy arising from the unknown or irregular expansion of the containing vessel of the gas thermometer, has recently been experimenting with a new method of measuring temperatures. He employs the varying refractive power of gases at different densities. A given refraction always corresponds to a given density, though the pressure and temperature may be different. The principle is applied by the method of interference. A luminous beam is split up into two parts, which traverse two tubes filled with the same gas, and the initial appearance of the interference fringes is noted. One of the tubes is then raised to the temperature which it is desired to measure, the pressure remaining constant and being that of the atmosphere. As the density of the gas diminishes, the interference fringes become displaced. By reducing the pressure of the gas in the second or cold tube, the fringes are brought back to their initial position; and this means that the density is then the same in both tubes. Now, the refraction of a gas is always exactly proportional to its density: the density of the gas in the cold tube is known from its pressure. Hence the density of the hot tube is also known, and from this its temperature is deduced. The method is thought to be well adapted for the measurement of high temperatures, such as those of furnaces,