Popular Science Monthly/Volume 57/September 1900/The Psychology of Red II

From Wikisource
Jump to navigation Jump to search


The facts and considerations we have passed in review fairly indicate the physiological and psychological preëminence of red among the colors of the spectrum to which we are sensitive. What is the cause of that preëminence?

It seems to me that two orders of causes have coöperated to produce this predominant influence, one physical and depending on the special effects of the long-waved portion of the spectrum on living matter, the other psychological and resulting from the special environmental influences to which man, and to some extent even the higher animals generally, have been subjected. It is possible that these two influences blend together and cannot at any point be disentangled; it is possible that acquired aptitude may be inherited or that what seem to be acquired aptitudes are really perpetuated congenital variations; but on the whole the two influences are so distinct that we may deal with them separately.

On the physical side the influence of the red rays, although there is much evidence showing that it may be traced throughout the whole of organic nature, is certainly most strongly and convincingly exhibited on plants. The characteristic greenness of vegetation alone bears witness to this fact. The red rays are life to the chlorophyll-bearing plant, the violet rays are death. A meadow, it has been justly said, is a vast field of tongues of fire greedily licking up the red rays and vomiting forth the poisonous bile of blue and yellow. An experiment of Flammarion's has beautifully shown the widely different reaction of plants to the red and violet rays. At the climatological station at Juvisy he constructed four greenhouses—one of ordinary transparent glass, another of red glass, another of green, the fourth of dark blue. The glass was monochromatic, as carefully tested by the spectroscope, and dark blue was used instead of violet because it was impossible to obtain a perfect violet glass. These were all placed under uniform meteorological and other conditions, and from certain plants such as the sensitive plant, previously sown on the same day in the same soil, eight of each kind were selected, all measuring 27 millimetres, and placed by two and two in the four greenhouses on the 4th of July. On the 15th of August there were notable differences in height, color and sensitiveness, and these differences continued to become marked; photographs of the plants on the 4th of October showed that while those under blue glass had made no progress, those under red glass had attained extraordinary development, red light acting like a manure. While those under blue glass became insensitive, under red glass the sensitive plants had become excessively sensitive to the least breath. They also flowered, those under transparent glass being vigorous and showing buds, but not flowering. The foliage under red glass was very light, under blue darkest. Similar but less marked effects were found in the case of geraniums, strawberries, etc. The strawberries under blue glass were no more advanced in October than in May; though not growing old their life was little more than a sleep. It appears, however, that the stimulating influence of red light fails to influence favorably the ripening of fruit. Zacharewiez, professor of agriculture at Vaucluse, has found that red, or rather orange, produces the greatest amount of vegetation, while as regards fruit, the finest and earliest was grown under clear glass, violet glass, indeed, causing the amount of fruit to increase but at the expense of the quality.

Moreover, the lowest as well as the highest plants participated in this response to the red rays, and in even a more marked degree, for they perish altogether under the influence of the violet rays. Marshall Ward and others have shown that the blue, violet and ultra-violet rays, but no others, are deleterious to bacteria. Finsen has successfully made use of this fact in the treatment of bacterial skin diseases. Reynolds Green has shown that while the ultra-violet rays have a destructive influence on diastase, the red rays have a powerfully stimulating effect, increasing diastase and converting zymogen into diastase.

While the influence of the red rays on the plant is thus so enormous and easily demonstrated, the physical effects of red on animals seem to be even opposite in character, although results of experiments are somewhat contradictory. Béclard found that the larva? of the flesh fly raised under violet glass were three fourths larger than those raised under green glass; the order was violet, blue, red, yellow, white, green. In the case of tadpoles, Yung found that violet or blue was especially favorable to the growth of frogs; he also found that fish hatch most rapidly under violet light. Thus the influence that is practically death to plants is that most favorable to life in animals. Both effects, however, as Davenport truly remarks in his 'Experimental Morphology,' when summing up the results of investigations, are due to the same chemical metabolic changes, but while plants succumb to the influence of the violet rays, animals, being more highly organized, are able to take advantage of them and flourish.

At the same time the influence of violet rays on animal tissue is by no means invariably beneficial; they are often too powerful a stimulant. That the violet rays have an influence on the human skin which in the first place, at all events, is destructive and harmful in a high degree, is now clearly established by the observations and experiments of Charcot, Unna, Hammer, Bowles and others, while Finsen has made an important advance in the treatment of disease based on this fact. The conditions called 'sun-burn,' 'snow-burn' 'snow-blindness' for instance, which may affect even travelers on snow-fields and Arctic explorers, are now known to be wholly due to the violet and not to the red rays. Unna's device of wearing a yellow veil, and Bowles's plan of painting the skin brown, thus shutting off the violet rays, suffice to prevent sunburn. The same effect is also obtained by nature, which under the stress of sunlight, and largely through the irritation of the violet rays themselves, weaves a pigmentary veil of yellow and brown on the skin, which thus protects from the further injurious influence of the violet rays and renders the sunlight a source of less alloyed joy and health.

That the presence of the red rays, or at all events the exclusion of the violet, is of great benefit in many skin diseases seems to be now beyond doubt. This has been shown by Finsen in his treatment of smallpox in red rooms; it appears that it was also known in the Middle Ages as well as in Japan, Tonquin and Roumania, red bed-covers, curtains or carpets being used to obtain the effect. Under the treatment by red light not only is the skin enabled to heal healthfully without scarring, but the whole course of the disease is beneficially affected and abbreviated, the fever is diminished and also the risk of complications. Another physician has discovered that a similar beneficial effect is produced by red light in measles. A child with a severe attack of measles was put into a room with red blinds and a photographic lamp. The rash speedily disappeared and the fever subsided, the child complaining only of the absence of light; the blinds were consequently removed, and the fever, rash and prostration returned, to disappear again when the blinds were resumed.

Whether red light, or the exclusion of violet, exerts a beneficial influence on the hæmoglobin of the blood and on metabolism generally has not been distinctly proved, but it seems to me to be indicated by such experiments as those of Marti published a few years ago in the Atti del Lincei. This investigator found that while feeble irritation of the skin promotes the formation of blood corpuscles, strong irritation diminishes the blood corpuscles and also the hæmoglobin; at the same time he found that darkness also diminishes the number of red corpuscles, while continued exposure to intense light (even at night the electric light, which, however, is rich in violet rays) favors increased formation of red corpuscles, and in some degree of haemoglobin. Finsen has shown that inflammation of the skin caused by chemical or violet light leads to contraction of the red corpuscles.

This brings us to the consideration of the influence of the red rays on the nervous system. From time to time experiments have been made as to the influence of various colored lights, chiefly on the insane, as first suggested by Father Secchi in 1895. Even yet, however, the specific mental influences of the various colors are not quite clear. It has been found by some that the red rays are far more soothing and comfortable, less irritating, than the total rays of uncolored light, and Garbini found that angry infants were soothed by the light through red glass, only slightly by that through green and not at all by other colored light. On the other hand, it is stated that a well-known dry plate manufacturer at Lyons was obliged to substitute green-colored glass in the windows of his large room for the usual red because the work people sang and gesticulated all day and the men made love to the women, while under the influence of green glass (which also allows yellow rays to pass) they became quiet and silent and seemed less fatigued when they left off work. We need not attach much value to these statements, but in this connection it is interesting to refer to the results obtained some years ago by Féré and recorded in his 'Sensation et Mouvement.' Experimenting on normal subjects as well as on nervous subjects, who were found more sensitive, with colored light passed through glass or sheets of gelatine, he found notable differences in muscular power, measured by the dynamometer, and in the circulation as measured by plethysmography tracings of the forearm under the influence of different colors. He found in this manner with one subject whose normal muscular power was represented by 23 that blue light increased his power to 24, green to 28, yellow to 30, orange to 35 and red to 42. The dynamogenic powers of the different colors were thus found to rank in the spectral order, red representing the climax of energy, or, as Féré puts it, "the intensity of the visual sensation varies as the vibrations." Féré found that colors need not be perceived in order to show their influence, thus proving the purely physical nature of that influence, for in a subject who was unable to see colors with one eye, the color stimulus had the same dynamogenic effect whether applied to the seeing or the defective eye. Increase of volume of blood in the limbs, measured by the plethysmograph, so far as we can rely on Féré's experiments, ran parallel with the influence on muscular power, culminating with red, so that no metaphor is involved, Féré remarks, when we speak of red as a 'warm' color. On the insane the results attained by the use of colored glass do not seem to be quite coherent. Some of the earlier observers described the beneficial effects of blue glass in soothing maniacs. Pritchard Davies, however, was not able to find that red light had any beneficial effect, though on some cases blue had, while Roffegean found that, in the case of a somber and taciturn maniac who could rarely be persuaded to eat, three hours in a red-lighted room produced a markedly beneficial effect, and a man with delusions of persecution became quite rational and was even in a condition to be sent home after a few days in the same room. He also found that a violent maniac wearing a strait jacket, after a few hours in a room with blue glass windows became quite calm and gave no further trouble. Osburne has found, after many years' experience, that in the absence of structural disease violet light (for from three to six hours) is most useful in the treatment of excitement, sleeplessness and acute mania; red he has found of some benefit, though to a much less degree in such cases (it must be remarked that violet light as usually applied is not free from red), while he has not found any color with which he has tried experiments (red, orange or violet) of benefit in melancholia. The significance of these facts is not altogether clear; the influence, as Pritchard Davies concluded, seems to be largely moral, though it may be that the colors of long wave-length are tonic and those of short wave-length sedative.

So far I have been chiefly concerned to point out that the immense emotional impressiveness of red has a basis in physical laws, being by no means altogether a matter of environmental associations. It is true that the two groups of influences overlap, and that we can not always distinguish them. We can not be sure that the greater sensitiveness to the red rays may not have been emphasized in the organism, not necessarily as the result of inherited acquirement, but probably as the perpetuation of a variation of sensibility, found beneficial in an environment where red was liable to be especially associated with objects that were to be avoided as terrible or sought as useful. In this way the physical and environmental factors would run in a circle.

We have to bear this consideration in mind when we take into account the susceptibilities of animals, especially of the higher animals, to red. The color sense, it is well known, is widely diffused among animals; indeed this fact has been brought forward, especially by Pouchet, to prove that there can have been no color evolution in man; this it can scarcely be said to show, since evolution does not run in a straight line, and it is quite conceivable and even probable that the ancestors of man were less dependent than many lower animals, for the means of living, on a highly developed color sense. Thus a color sense that among some creatures is so highly developed as to include even the ultra-violet rays, was among our own ape-like ancestors either never developed or partially lost.

Graber, in his important investigation into the color sense of animals, showed that of fifty animals studied by him forty showed strong color preferences in their places of abode. In general he found, without being able to explain the fact, that animals which prefer the dark are red lovers, those which prefer the light are blue lovers. The common worm, with head and tail cut off, still preferred red to blue nearly as much as when uninjured. (This would seem to indicate the same kind of susceptibility to unaccustomed violet rays which we have already encountered in the phenomenon of sun-burn.) The triton and cochineal, with eyes removed and heads covered with wax, still had delicate sense for color and brightness. The flea infesting the dog had a finer color sense than the bee, while nearly all the animals Graber investigated were more or less sensitive to the ultra-red rays.

Among insects it scarcely appears, nor should we expect that there would be any peculiarly marked predilection or aversion for red. Cockerell and F. W. Anderson, from observations in various parts of the United States, believe that yellow (i. e., the brightest color) is the most attractive to insects, and the former doubts whether insects can distinguish red from yellow. Among the higher animals, and even among fishes and birds, there is not only a color sense, but a highly emotionalized color sense, and red appears to be usually the color that arouses the emotion. There is a proverb, 'Women and mackerel are caught by red,' and perch is also said to be caught by red bait. Sparrows appear to be repelled by red; the case is reported of a hen sparrow, kept in captivity for ten years, which though otherwise a fearless bird 'would on seeing scarlet show painful signs of distress and faint away.' The lady who records this observation has noted the same repugnance to red, though in a less marked degree, in other sparrows, one of which showed a predilection for blue objects, and she remarks that when feeding outdoor sparrows from the window they flew away when she wore a red jacket, while a blue jacket inspired them with confidence; other birds, she found, except a cockatoo, were unaffected by colors. Red, it is well known, is very obnoxious to turkey cocks, while the fury aroused in various quadrupeds by red was known at a very early period; Seneca referred to it in the case of the bull, the most familiar example; it is seen in buffaloes, sometimes in horses, and also, it is said, in the hippopotamus.

The phenomena of color aversion and color predilection among insects may possibly be in some degree a matter of physical sensibility, varying according to the creature's tissues, habitat and needs, but as we approach the vertebrates and especially the mammals there can be little doubt that it is mainly a matter of environment and association; in other words, that it is accounted for by the color of food, the color of blood and the color of the chief secondary sexual characters.

Let us, however, confine ourselves to man, and consider what are the chief colored objects that are of most vital concern to the human and most closely allied species.

One of the earliest groups of such objects—some would say the most important group in this connection—is that of ripe fruits. Certainly among the frugivorous apes and among many races of primitive man, the color of fruits must be a powerful factor in developing a sensibility for red rays, and in associating such sensibility with emotional satisfaction. The color of fruits is most generally red, orange or purple, and since purple is largely made up of red, it is clear that the influence of fruits will almost exclusively bear on the rays of long wave-length. We may reasonably suppose that the search for fruits acted as an important factor in the development of a special sensibility for red.

A later factor in the predilection for the red, orange and yellow rays, though scarcely a factor in their discrimination, lies in the fact that these are the colors of fire. Flame, apart from its beauty, on which certain poets, Shelley especially, have often insisted, is a source of massive physical satisfaction. Even under the conditions of civilization we are often acutely sensitive to this fact, while under the conditions of primitive life, in imperfect shelters, caves or tents, where no other source of artificial light and heat is known, the satisfaction is immensely greater. At the same time fire is associated with food, it is a protection from wild beasts and the accompaniment of the festival. It may even take on a sacred and symbolic character, and the Roman goddess Vesta was, as Ovid said, simply 'living flame.'

While fruit or fire would tend to make the emotional tone of red pleasant, another very powerful factor in its emotional influences, though this time as much by causing terror as pleasure, is the fact that it is the color of blood. That 'the blood is the life' is a belief instinctively stamped even on the emotions of animals, and it has not died even in civilized man, for the sight of blood produces on many persons a sickening and terrifying sensation which is only overcome by habit and experience or by a very strong effort of will. It is not surprising that in some parts of the world, and even in our own Indo-European group of languages, the name for red is 'blood-color.'

It is evident, however, that at a very early period of primitive culture the blood had ceased to be merely a source of terror, or even of the joy of battle. We find everywhere that blood is blended into complex ritual customs, and thus associated with complex emotional states. Among the ancient Arabians blood was smeared on the body on various occasions, and in modern Arabia blood is still so used. Everywhere, even in the folk-lore of modern Europe, we find that blood is a medicine, as it is also among the primitive aborigines of Australia, so carefully investigated by Baldwin Spencer and Gillen. Among these latter primitive people we meet with a phenomenon of very great significance. We find, that is, that blood is the earliest pigment. There can be little doubt that the earliest paint used by man—no doubt by man when in a much more primitive condition than even the Australians—was blood. In the initiation rites of the Arunta tribes, as described by Spencer and Gillen, the chief performer is elaborately decorated with patterns in eagle-hawk down stuck to his body with blood drawn from some member of the tribe. It was estimated that one man alone, on one of these occasions, allowed five half-pints to be taken from him during a single day; at the same time the blood is not regarded as sufficient pigment and the down is also colored red and yellow with ochre. Red ochre, Spencer and Gillen remark, is frequently a substitute for blood or is used with it. Blood is a medicine, and when any one is ill he is first rubbed over with red ochre, it being obvious to the primitive mind that the ochre will share the remedial properties of blood; in the same way ceremonial objects may sometimes be rubbed over with ochre instead of blood. They associate this red ochre especially with women's blood; and it is said that once some women after long walking were so exhausted that hemorrhage came on and this gave rise to deposits of red ochre. Other red ochre pits, also, they attribute to blood which flowed from women. It appears also that the blood with which sacred implements used in the ritual ceremonies of these Central Australians were smeared must be drawn from women.

Far from Australia, among the hill tribes of the Central Indian hills, we find the same blood ritual and the same tendency to substitute pigments for blood. Among some of the Bengal tribes, says Crooke, blood is drawn from the husband's little finger, mixed with betel and eaten by the bride. A further stage is seen among the allied Kurmis who mix the blood with lac dye. Lastly come the rites, common to all these tribes, in which the bridegroom, often in secrecy, covered by a sheet, rubs vermilion on the parting of the girl's hair, while the women relations smear their toes with lac dye. It is a sacramental rite, and after the husband's death the widow solemnly washes off the red from her hair, or flings the little box in which she keeps the coloring matter into running water.

Some of the foregoing facts, both in Australia and India, suggest the transition to another factor in the emotional potency possessed by red. Red is not only the color of fire and of war and of ritual pigment; it is the color of love. This is certainly an ancient and powerful factor in the emotional attitude towards red. Secondary sexual characters, even among birds, are often red; many fishes, also, at the epoch of the oviposit show a red tint on the orifice of the sexual apparatus; patches of red, sometimes very brilliant, but only appearing when the animal is mature, are perhaps the commonest adornments of monkeys. In man the color of the hair and beard, the most conspicuous of the secondary sexual characters, is most usually brown, or some other variety of red. The lips are crimson, the mucous membrane generally a dark red; the scarlet of the blush, among all fair races, whatever other sources it may have, is always regarded as especially the ensign of love. The rose is the flower of love, as the pale lily is of virtue. This association is quite inapt, and many people who are sensitive in such matters feel that the lily and many white flowers are far more symbolical of rapture and voluptuousness than the rose. It is, however, the color and not the scent or other qualities that has exerted decisive influence on the choice of the symbol. In the Teutonic symbolism of fourteenth century Europe red was the color of love, as also, with yellow, it was the favorite color for garments. In more modern times this last tendency has survived. Sardou decides, it is reported, the color of the dresses to be worn in his plays, on the ground that if he did not the actresses would all wear red to attract attention to themselves, as once occurred at the Odéon. Eighteen hundred years earlier, Clement of Alexandria had written: "Would it were possible to abolish purple in dress, so as not to turn the eyes of the spectators on the faces of those that wear it!" He proceeds to lament that women make all their garments of purple (the classic purple was really a red) in order to inflame lust—those 'stupid and luxurious purples' which have caused Tyre and Sidon and the Lacedæmonian Sea to be so much in demand for their purple fishes. Similar phenomena are noted on the other side of the world. Thus the Japanese, as the Rev. Walter Weston informs us, have a proverb: 'Love flies with a red petticoat.' Married women are not there supposed to wear red petticoats, for they are too attractive, and a married woman should be attractive only to her husband. The æsthetic Japanese may be thought to be specially sensitive to color, but in Africa also, in Loango, as Pechuel-Loesche mentions, pregnant women are forbidden to wear red, and it would doubtless be possible to find many similar indications of this feeling in other parts of the world.

We have now passed in review all the influences which, by force of their powerful attraction or repulsion, have during countless ages impressed on man, and often on his ancestors, the strong and poignant emotions which accompany the sensation of the most vividly and persistently seen of all colors. We find evidence of the reality of the influences we have traced—especially those of fire, blood and love—in Christian ecclesiastical symbolism, according to which red variously signifies ardent love, burning zeal, energy, courage, cruelty and bloodthirstiness. To the antagonism and complexity of these influences we must doubtless attribute the disturbing nature of the emotion aroused by the group of red sensations and the fluctuations in the predilection felt towards it. It is at once the most attractive and the most repulsive of colors. To enjoy it we must use it economically. The vision of poppies on a background of golden corn, the glint of roses embowered in green leaves, the sudden flash of a scarlet flower on a southern woman's dark hair—it is in such visions as these that red gives us its emotional thrill altogether untouched hy pain. If the 'multitudinous seas' were indeed 'incarnadined' for us in 'one red/ if the sky were scarlet, or all vegetation crimson, the horror of the world would be painful to contemplate for nervous systems moulded to our vision of nature. Our eyes have developed in a world where the green and blue rays meet us at every step, and where we have in consequence been almost as dulled to them as we are to the weight of the atmosphere that presses in on us on every side. It is under the clouded skies of northern lands that blue is counted the loveliest of colors; it is in the desert that green becomes supremely beautiful and sacred.