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Let C be the current in the conductor, and let 
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    {\displaystyle \left.{\begin{array}{ccc}\mathrm {or} &&X=\mu \gamma q'-\mu \beta r'.\\\\\mathrm {Similarly,} &&Y=\mu \alpha r'-\mu \gamma p',\\\\&&Z=\mu \beta p'-\mu \alpha q'.\end{array}}\right\}}
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These are the equations which determine the mechanical force acting on a conductor carrying a current. The force is perpendicular to the current and to the lines of force, and is measured by the area of the parallelogram formed by lines parallel to the current and lines of force, and proportional to their intensities.







Mechanical Force on a Magnet.




(77) In any part of the field not traversed by electric currents the distribution of magnetic intensity may be represented by the differential coefficients of a function which may be called the magnetic potential. When there are no currents in the field, this quantity has a single value for each point. When there are currents, the potential has a series of values at each point, but its differential coefficients have only one value, namely,
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    {\displaystyle {\frac {d\varphi }{dx}}=\alpha ,\ {\frac {d\varphi }{dy}}=\beta ,\ {\frac {d\varphi }{dz}}=\gamma .}
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Substituting these values of 
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[image: {\displaystyle \alpha ,\beta ,\gamma }] in the expression (equation 38) for the intrinsic energy of the field, and integrating by parts, it becomes
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The expression
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indicates the number of lines of magnetic force which have their origin within the space V. Now a magnetic pole is known to us only as the origin or termination of lines of magnetic force, and a unit pole is one which has 
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If there are two magnetic poles 
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and these must be equal by the principle of Conservation of Energy.
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