Page:A Dynamical Theory of the Electromagnetic Field.pdf/9

From Wikisource
Jump to navigation Jump to search
This page has been validated.

momentum, which may be called the momentum of the fly-wheel reduced to the driving-point. The unbalanced force acting on the driving-point increases this momentum, and is measured by the rate of its increase.

In the case of electric currents, the resistance to sudden increase or diminution of strength produces effects exactly like those of momentum, but the amount of this momentum depends on the shape of the conductor and the relative position of its different parts.

Mutual Action of two Currents

(23) If there are two electric currents in the field, the magnetic force at any point is that compounded of the forces due to each current separately, and since the two currents are in connexion with every point of the field, they will be in connexion with each other, so that any increases or diminution of the one will produce a force acting with or contrary to the other.

Dynamical Illustration of Reduced Momentum

(24) As a dynamical illustration, let us suppose a body so connected with two independent driving-points and that its velocity is times that of together with times that of . Let be the velocity of , that of , and that of , and let , , be their simultaneous displacements, then by the general equation of dynamics[1],

where and are the forces acting at and .



Substituting, and remembering that and are independent,


We may call the momentum of referred to , and its momentum referred to ; then we may say that the effect of the force is to increase the momentum of referred to , and that of to increase its momentum referred to .

If there are many bodies connected with and in a similar way but with different values of and , we may treat the question in the same way by assuming

, , ,
  1. Lagrange, Mec. Anal. II, 2, 5.