Page:A Treatise on Electricity and Magnetism - Volume 1.djvu/321

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.

of the hemisphere so that its surface is a little more than a hemisphere, and meets the surface of the sphere at right angles. Then we have a case of which we have already obtained the exact solution. See Art. 168.

If and be the centres of the two spheres cutting each other at right angles, a diameter of the circle of intersection, and the centre of that circle, then if is the potential of a conductor whose outer surface coincides with that of the two spheres, the quantity of electricity on the exposed surface of the sphere is

and that on the exposed surface of the sphere is

the total charge being the sum of these, or

If and are the radii of the spheres, then, when is large compared with , the charge on is to that on in the ratio of

Now let be the uniform surface-density on when is removed, then the charge on is

and therefore the charge on is

or, when is very small compared with , the charge on the hemisphere is equal to three times that due to a surface-density extending over an area equal to that of the circular base of the hemisphere.

It appears from Art. 175 that if a small sphere is made to touch an electrified body, and is then removed to a distance from it, the mean surface-density on the sphere is to the surface-density of the body at the point of contact as is to 6, or as 1.645 to 1.

225.] The most convenient form for the proof plane is that of a circular disk. We shall therefore shew how the charge on a circular disk laid on an electrified surface is to be measured.

For this purpose we shall construct a value of the potential function so that one of the equipotential surfaces resembles a circular flattened protuberance whose general form is somewhat like that of a disk lying on a plane.