Page:A short history of astronomy(1898).djvu/470

From Wikisource
Jump to navigation Jump to search
This page has been validated.
388
A Short History of Astronomy
[Ch. XIII

Robert Kirchhoff (1824–1887) of Heidelberg, who at first worked in co-operation with the chemist Bunsen.

Kirchhoff shewed that a luminous solid or liquid—or, as we now know, a highly compressed gas—gives a continuous spectrum; whereas a substance in the gaseous state gives a spectrum consisting of bright lines (with or without a faint continuous spectrum), and these bright lines depend on the particular substance and are characteristic of it. Consequently the presence of a particular substance in the form of gas in a hot body can be inferred from the presence of its characteristic lines in the spectrum of the light. The dark lines in the solar spectrum were explained by the fundamental principle—often known as Kirchhoff's law—that a body's capacity for stopping or absorbing light of a particular wave-length is proportional to its power, under like conditions, of giving out the same light. If, in particular, light from a luminous solid or liquid body, giving a continuous spectrum, passes through a gas, the gas absorbs light of the same wave-length as that which it itself gives out: if the gas gives out more light of these particular wave-lengths than it absorbs, then the spectrum is crossed by the corresponding bright lines; but if it absorbs more than it gives out, then there is a deficiency of light of these wave-lengths and the corresponding parts of the spectrum appear dark that is, the spectrum is crossed by dark lines in the same position as the bright lines in the spectrum of the gas alone. Whether the gas absorbs more or less than it gives out is essentially a question of temperature, so that if light from a hot solid or liquid passes through a gas at a higher temperature a spectrum crossed by bright lines is the result, whereas if the gas is cooler than the body behind it dark lines are seen in the spectrum.

300. The presence of the Fraunhofer lines in the spectrum of the sun shews that sunlight comes from a hot solid or liquid body (or from a highly compressed gas), and that it has passed through cooler gases which have absorbed light of the wave-lengths corresponding to the dark lines. These gases must be either round the sun or in our atmosphere; and it is not difficult to shew that, although some of the Fraunhofer lines are due to our