Page:A short history of astronomy(1898).djvu/471

From Wikisource
Jump to navigation Jump to search
This page has been validated.
§§ 300, 301]
Spectrum Analysis
389

atmosphere, the majority cannot be, and are therefore caused by gases in the atmosphere of the sun.

For example, the metal sodium when vaporised gives a spectrum characterised by two nearly coincident bright lines in the yellow part of the spectrum; these agree in position with a pair of dark lines (known as D) in the spectrum of the sun (see fig. 97); Kirchhoff inferred therefore that the atmosphere of the sun contains sodium. By comparison of the dark lines in the spectrum of the sun with the bright lines in the spectra of metals and other substances, their presence or absence in the solar atmosphere can accordingly be ascertained. In the case of iron—which has an extremely complicated spectrum—Kirchhoff succeeded in identifying 60 lines (since increased to more than 2,000) in its spectrum with dark lines in the spectrum of the sun. Some half-dozen other known elements were also identified by Kirchhoff in the sun.

The inquiry into solar chemistry thus started has since been prosecuted with great zeal. Improved methods and increased care have led to the construction of a series of maps of the solar spectrum, beginning with Kirchhoff's own, published in 1861–62, of constantly increasing complexity and accuracy. Knowledge of the spectra of the metals has also been greatly extended. At the present time between 30 and 40 elements have been identified in the sun, the most interesting besides those already mentioned being hydrogen, calcium, magnesium, and carbon.

The first spectroscopic work on the sun dealt only with the light received from the sun as a whole, but it was soon seen that by throwing an image of the sun on to the slit of the spectroscope by means of a telescope the spectrum of a particular part of the sun's surface, such as a spot or a facula, could be obtained; and an immense number of observations of this character have been made.

301. Observations of total eclipses of the sun have shewn that the bright surface of the sun as we ordinarily see it is not the whole, but that outside this there is an envelope of some kind too faint to be seen ordinarily but becoming visible when the intense light of the sun itself is cut off by the moon. A white halo of considerable extent round the eclipsed sun, now called the corona, is referred to by