Page:BatemanGeneral.djvu/3

From Wikisource
Jump to navigation Jump to search
This page has been validated.
General Relativity.
221

correspondence by which the elementary processes in the brain are interpreted may be adjusted in such a way that some of the changes are obscured.

Again, if we assume that the nature of an electromagnetic field depends on the type of fundamental quadratic form which determines the constitutive relations, and thus depends indirectly on a transformation which filters the coefficients of this quadratic form, this dependence may be a symbol for the relation between physical and mental phenomena instead of giving the influence of gravitation on light as in Einstein's theory.

Einstein and others have attempted to formulate a set of equations of motion which will cover all physical phenomena; but the present writer does not feel inclined to accept them as final, because in his opinion the true equations of motion should be capable of accounting for the phenomena of life, which after all are the most important physical phenomena.

To make my position more definite, let us consider one of the methods by which the equations of motion of an electron are obtained in the usual electromagnetic theory. The principle is adopted that at each instant the integral over the electron of the total force on each element must be zero. Now before this principle can be used to write down the equations of motion we must know the design of the electron, and we must know the way in which the motions of the different elements are co-ordinated. This co-ordination or organization of the motions of the elements may be represented mathematically by a sequence of infinitesimal transformations, by which some of the features of the design are preserved. The design of the electron and the co-ordinated motion of its parts may, perhaps, be specified by a quadratic differential form in four variables, which determines a mapping of the interior of the electron on the interior of a stationary sphere; but I doubt if this is sufficiently general. A knowledge of this quadratic differential form is necessary then before we can write down the equations of motion of the electron as a whole. What we usually regard as the equations of motion of matter need then to be supplemented by geometrical conditions which specify the design and organization of each elementary portion of matter. Furthermore, when this design and organization is assumed to be known, the ordinary equations of motion may be regarded as a consequence of the electromagnetic laws and the above-mentioned principle.

It must be confessed, however, that this principle does not