Page:BatemanGeneral.djvu/4

From Wikisource
Jump to navigation Jump to search
This page has been validated.
222
Dr. H. Bateman on

seem satisfactory for a fundamental principle, and is probably a consequence of some deep underlying principles which are the true equations of motion. These new principles should indicate the reason for a similarity of design of the different electrons. One of the fundamental facts of life is that a good design is copied, and that there is a certain characteristic of the design of an object and its surrounding medium, depending perhaps on the closeness of fit of an imperfect correspondence, which determines the extent to which the design of the object is copied and preserved in the surrounding medium. This may be called the value of the design in relation to the medium, and it is a quantity which I feel must be taken into account in the true equations of motion, and a number assigned to it at each instant. As an example of standardization, the Ford motor-car is not in it with the electron; and, according to the above view, we must regard the design of the electron as one of very great value in relation to the surrounding medium.

Returning to our generalized scheme of electromagnetic equations, and looking at matters from the point of view of physical optics, it may be remarked that the scheme of constitutive relations mentioned above is not sufficiently general to cover the case of a doubly-refracting crystalline medium[1]. To remedy this defect we may use a biquadratic integral form instead of a quadratic differential form to specify the constitutive relations. The vanishing of the biquadratic integral form may perhaps be regarded as the condition for action of a moving curve on a particle, a type of condition that seems natural if we regard moving Faraday tubes as fundamental. With this generalized theory it is possible for the elementary wave surface in a medium to be a general Kummer surface, a surface of which Fresnel's wave surface is a particular case. It is doubtful whether this generalized theory is sufficiently general for all purposes, and the above example is given just to emphasize that the absolute calculus of Ricci and Levi Civita can be used to develop a theory of generalized relativity on many lines in addition to that adopted by Einstein.

Going back to the case in which a quadratic form is sufficient to determine the optical properties of a medium, we may remark that if Einstein's idea of the gravitational equations is accepted, it is still by no means certain that his

  1. Proc. London Math. Soc. ser. 2, vol. viii. p. 375. See also p. 261 of my first paper.