Page:EB1911 - Volume 04.djvu/731

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
708
BRZOZOWSKI
  


(and the closely related Nanomitrium which has a small operculum) the columella becomes absorbed during the development of the spores. Stomata are present on the wall of the small capsule. Such facts as these suggest that in many cases the cleistocarpous condition is the result of reduction rather than primitive, and that possibly the same holds for Archidium.

The former subdivision of the Bryales into Musci Cleistocarpi and Musci Stegocarpi according to the absence or presence of an operculum is thus clearly artificial. The same holds even more obviously for the grouping of the stegocarpous forms into those in which the archegonial group terminates a main axis (acrocarpi) and those in which it is borne on a more or less developed lateral branch (pleurocarpi). Modern classifications of the Bryales depend mainly on the construction of the peristome.


Fig. 15.—Funaria hygrometrica. Longitudinal section through the summit of a male branch. (After Sachs.)
e, Leaves. c, Paraphyses.
d, Leaves cut through the mid-ribs. b, Antheridia.
Fig. 16.—Funaria hygrometrica.
  (After Goebel.)
A. Longitudinal section of the very young sporogonium (f, f ′) enclosed in the archegonial wall (b, h).
B, C. Further stages of the development of the sporogonium (f) enclosed in the calyptra formed from the archegonial wall (c) and still bearing the neck (h). The foot of the sporogonium has penetrated into the underlying tissue of the stem of the moss-plant.

It remains to be considered to what extent the several natural groups of plants classed together in the Bryophyta can be placed in a phylogenetic relation to one another. Practically no help is afforded by palaeobotany, and only the comparison of existing forms can be depended on. The indications of probable lines of evolution are clearest in the Hepaticae. The Marchantiales form an obviously natural evolutionary group, and the same is probably true of the Jungermanniales, although in neither case can the partial lines of progression within the main groups be said to be quite clear. Such a form as Sphaerocarpus, which has features in common with the lower Marchantiales, enables us to form an idea of the divergence of the two groups from a common ancestry. The Anthocerotales, on the other hand, stand in an isolated position, and recent researches have served to emphasize this rather than to confirm the relationship with the Jungermanniales suggested by Leitgeb. The indications of a serial progression are not so clear in the mosses, but the majority of the forms may be regarded as forming a great phylogenetic group in the evolution of which the elaboration of the moss-plant has proceeded until the protonema appears as a mere preliminary stage to the formation of the plants. Parallel with the evolution of the gametophyte in form and structure, a progression can be traced in the sporogonium, although the simplest sporogonia available for study may owe much of their simplicity to reduction. The Andreaeales may perhaps be looked on as a divergent primitive branch of the same stock. On the other hand, the Sphagnales show such considerable and important differences from the rest of the mosses, that like the Anthocerotales among the liverworts, they may be regarded as a group, the relationship of which to the main stem is at least problematical. Between the Hepaticae, Anthocerotales, Sphagnales and Musci, there are no connecting forms known, and it must be left as an open question whether the Bryophyta are a monophyletic or polyphyletic group.

The question of the relationship of the Bryophyta on the one hand to the Thallophyta and on the other to the Pteridophyta lies even more in the region of speculation, on slender grounds without much hope of decisive evidence. In a general sense we may regard the Bryophyta as derived from an algal ancestry, without being able to suggest the nature of the ancestral forms or the geological period at which they arose. Recent researches on those Algae such as Coleochaete which appeared to afford a close comparison in their alternation of generations with Riccia, have shown that the body resulting from the segmentation of the fertilized ovum is not so strictly comparable in the two cases as had been supposed. The series of increasingly complex sporogonia among Bryophytes appears to be most naturally explained on an hypothesis of progressive sterilization of sporogenous tissue, such as has been advanced by Bower. On the other hand there are not wanting indications of reduction in the Bryophyte sporogonium which make an alternative view of its origin at least possible. With regard to the relationship of the Bryophyta and Pteridophyta the article on the latter group should be consulted. It will be sufficient to say in conclusion that while the alternating generations in the two groups are strictly comparable, no evidence of actual relationship is yet forthcoming.

For further information consult: Campbell, Mosses and Ferns (London, 1906); Engler and Prantl, Die naturlichen Pflanzenfamilien, Teil i. Abt. 3 (Leipzig, 1893–1907); Goebel, Organography of Plants (Oxford, 1905). Full references to the literature of the subject will be found in these works. For the identification of the British species of liverworts and mosses the following recent works will be of use: Pearson, The Hepaticae of the British Isles (London, 1902); Dixon and Jameson, The Student’s Handbook of British Mosses (London, 1896); Braithwaite, British Moss Flora (London, 1887–1905).  (W. H. L.) 

BRZOZOWSKI, THADDEUS (d. 1820), nineteenth general of the Jesuits, was appointed in succession to Gabriel Gruber on the 2nd of September 1805. In 1801 Pius VII. had given the Jesuits liberty to reconstitute themselves in north Russia (see Jesuits: History), and in 1812 Brzozowski secured the recognition of the Jesuit college of Polotsk as a university, though he could not obtain permission to go to Spain to agitate for the recognition