Page:EB1911 - Volume 05.djvu/680

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
  
CEMENT
655


These materials are mixed in the proportion of about 3:1 by weight so that the dried mixture contains approximately 75% of calcium carbonate, the balance being clay. The mixing may be effected in several ways. The method once exclusively used consists in mixing the raw materials with a large quantity of water in a wash mill, a machine having radial horizontalMixing. arms driven from a central vertical spindle and carrying harrows which stir up and intermix any soft material placed in the pit in which the apparatus revolves. The raw materials in the correct proportion are fed into this mill together with a large quantity of water. The thin watery “slip” or slurry flows into large settling tanks (“backs”) where the solids in suspension are deposited; the water is drawn off, leaving behind an intimate mixture of chalk and clay in the form of a wet paste. This is dug out, and after being dried on floors heated by flues is ready for burning. This process is now almost obsolete. According to present practice the raw materials are mixed in a wash mill with so much water that the resulting slurry contains 40 to 50% of water. The slurry, which is wet enough to flow, is ground between millstones so as to complete the process of comminution begun in the wash mill. Thorough grinding and mixing are of the utmost importance, as otherwise the cement ultimately produced will be unsound and of inferior quality. The drying of the slurry is generally effected by the waste heat of the kilns, so that while one charge is burning another is drying ready for the next loading of the kilns. The kilns commonly employed are “chamber kilns,” circularLoading the kiln. structures not unlike an ordinary running lime kiln, but having the top closed and connected at the side with a wide flue in which the slurry is exposed to the hot products of combustion from the kiln. The farther ends of the flues of several such kilns are connected with a chimney shaft. The slurry, in drying on the floor of the flue, forms a fairly tough cake which cracks spontaneously in the process of drying into rough blocks suitable for loading into the kiln. At the bottom of the kiln is a grate of iron bars, and on this wood and coke are piled to start the fire. A layer of dried slurry is loaded on this, then a layer of coke, then a layer of slurry, and so on until the kiln is filled with coke and slurry evenly distributed. Fresh slurry is run on to the drying floors, and the kiln is started. The construction of an ordinary chamber kiln may be gathered from the accompanying diagram (fig. 1). The operation of burning is a slow one. An ordinary kiln, which will contain about 50 tons of slurry and 12 tons of coke, will take two days to get fairly alight, and will be another two or three days in burning out. Therefore, allowing adequate time for loading and unloading, each kiln will require about one week for a complete run. The output will be about 30 tons of “clinker” ready to be ground into cement. The grinding of the hard rock-like masses of clinker is effected between millstones, or in modern plants in ball-mills, tube-mills and edge-runners. It is an important part of the manufacture, because the finished cement should be as fine and “floury” as possible. The foregoing description represents the procedure in use in many English factories. There are various modifications in practice according to local conditions: a few of these may be described. In all cases, however, the main operations are the same, viz. intimately mixing the raw materials, drying the mixture, if necessary, and burning it at a clinkering temperature (about 1500° C.=2732° F.). Thus when hard limestone is the form of calcium carbonate locally available, it is ground dry and mixed with the correct proportion of clay also dried and ground. The mixture is slightly damped, moulded into rough bricks, dried and burned. A possible alternative is to burn the limestone first and mix the resulting lime with clay, the mixture being burned as before. By this method grinding the hard limestone is avoided, but there is an extra expenditure of fuel in the double burning.

399
Fig. 1.


Fig. 2.

Many different forms of kiln are used for burning Portland cement. Besides the chamber kilns which have been described, there are the old-fashioned bottle kilns, which are similar to the chamber kilns, but are bottle-shaped and openOther kilns. at the top; they do not dry the slurry for their next charge. Their use is becoming obsolete. There are also stage kilns of the Dietzsch type, which consist of two vertical shafts, one above the other, but not in the same vertical line, connected by a horizontal channel. At this middle portion and in the upper part of the lower shaft the burning proper proceeds; the upper shaft is full of unburnt raw material which is heated by the hot gases coming from the burning zone, and the lower shaft contains clinker already burned and hot enough to heat the incoming air which supplies that necessary for combustion at the clinkering zone. A pair of Dietzsch kilns, built back to back, are shown in fig. 2. There are other forms of shaft kiln, such as the Schneider, in which there is a burning zone, a heating and cooling zone as in the Dietzsch, but no horizontal stage, the whole shaft being in the same vertical plane. Another form is the Hoffmann or ring kiln, made up of a number of compartments arranged in a ring and connected with a central chimney; in these compartments rough brick-shaped masses of the raw materials are stacked, and between these bricks fuel is sprinkled. At a given moment one of these compartments is burning and at its full temperature; the air for combustion is drawn in through one or more compartments behind it which have just finished burning, and is thereby strongly heated; the products of combustion pass away through one or more compartments in front of it and heat their contents before they are subjected to actual combustion. It will be seen that the principle of the ring kiln is similar to that of the stage kiln. In each case the clinker which has just been burned and is fully hot serves to heat the air-supply to the compartment where combustion is actually proceeding; in like manner the raw materials about to be burned are well heated by the waste gases from the compartment in full activity before they themselves are burned. (It may be noted that here and generally in this article “burn” is used in the technical sense; it is technically correct to speak of cement clinker being “burned”, although it is not a fuel; in accurate terms it is the fuel which is burned, and it is the heat it generates which raises the clinker to a high temperature, i.e. technically “burns” it.) By this device a great part of the heat is regenerated and a saving of fuel is effected.

The methods of burning cement described above are obsolescent. They are being replaced by the rotatory process, so called because the cement is burned in rotating cylinders instead of in fixed kilns. These cylinders vary from 60 to 150 ft. in length, an ordinary length in modern practice being 100

to 120 ft.; their diameter correspondingly varies fromRotatory kilns. 6 ft. to 7 ft. 6 in. The cylinders are made of steel plate, lined with refractory bricks, are carried on rollers at a slight angle with the horizontal, and are rotated by power. At the upper end the raw material is fed in either as a dry powder or as a slurry; at the lower end is a powerful burner. In the early days of rotatory kilns producer gas was used as a fuel, but with little success; about 1895 petroleum was used in the United States with complete success, but at a relatively heavy cost. At the present time, finely powdered coal injected by a blast of air is almost universally employed, petroleum being used only where it is actually cheaper than coal. In the working of this type of kiln the rotation and slight inclination of the cylinder cause the raw material to descend towards the lower end. At the upper end the raw material is dried and heated moderately. As it descends it reaches a part of the kiln where the temperature is higher; here the carbonic acid of the carbonate of lime, and the combined water of the clay are driven off, and the resulting lime begins to act chemically on the dehydrated clay. The material is then in a partially burnt and slightly sintered state, but it is not fully clinkered and would not make Portland cement. The material continues to descend by the rotation of the kiln and reaches the lower end nearest