the burner where the temperature is highest, and is there heated so highly that the union of the lime, silica and alumina is complete, and fully burnt clinker falls out of the kiln. It is extremely hot, and is cooled usually by being passed down one or more rotating cylinders, similar to the first, but smaller, and acting as coolers instead of kilns. On its way down the cylinders the clinker meets a current of cold air and is cooled, the air being correspondingly warmed and passing on to aid in the combustion of the fuel used in heating the kiln. This regenerative heating is similar in principle and effect to that obtained by means of the shaft and ring kilns described above. The output of these kilns varies from 200 to 400 tons per kiln per week according to their size and the nature of the raw materials burned, as against 30 tons per week for an ordinary chamber kiln. A large saving in labour is also secured. The rotatory system presents many advantages and is rapidly replacing the older methods of cement making. Fig. 3 represents diagrammatically a rotatory cement plant on the Hurry & Seaman system, which was one of the first to make cement by the rotatory process successfully on a large scale, using powdered coal as fuel. Rotatory kilns of various other makes are now in use, but the same principles are embodied, namely, the employment of a rotating inclined cylinder for burning the raw materials, a burner fed with powdered coal and a blast of air, and some device such as a cooling cylinder or cooling tower by which the clinker may be cooled and the air correspondingly heated on its way to the burner.
Another method of making Portland cement which has been proposed and tried with some success consists in fusing the raw materials together in an apparatus of the type of a blast furnace. The high temperature necessary to fuse cement clinker makes this process difficult to accomplish commercially, but it has many inherent merits and may be the process of the future, displacing the rotatory method.
Portland cement clinker, however produced, is a hard, rock-like substance of semi-vitrified appearance and very dark colour. The product from a well-run rotatory kiln is all evenly burnt and properly vitrified; that from an ordinary fixed kiln of whatever type is apt to contain a certain amount Cement clinker. (5 to 15%) of underburnt material, which is yellowish and friable and is not properly clinkered. This material must be picked out, as such underburnt stuff contains free lime or unsaturated lime compounds. These may slake slowly in the finished cement and cause such expansion as may destroy the work of which it forms part. Well-burnt, well-picked clinker when ground yields good Portland cement. Nothing is added during or after grinding save a small amount (1 to 2%) of calcium sulphate in the form either of gypsum or of plaster of Paris, which is sometimes needed to make the cement slower-setting. For the same purpose a small quantity of water (up to 2%) may be added either by moistening the clinker or by blowing steam into the mills in which the clinker is ground. This small addition for this specified purpose is recognized as legitimate, but the employment of various cheap materials such as ragstone and blast-furnace slag, sometimes added as diluents or make-weights, is adulteration and therefore fraudulent.
The composition of Portland cement varies within comparatively narrow limits, and for given raw materials the variations are tending to become smaller as regularity and skill in manufacture increase. The following analysis may be taken as typical of cements made from chalk and clay on the Thames Composition. and Medway:—
Per cent. | |
Silica (SiO2) | 22·0 |
Insoluble residue | 1·0 |
Alumina (Al2O3) | 7·5 |
Ferric oxide (Fe2O3) | 3·5 |
Lime (CaO) | 62·0 |
Magnesia (MgO) | 1·0 |
Sulphuric anhydride (SO3) | 1·5 |
Carbonic anhydride (CO2) | 0·5 |
Water (H2O) | 0·5 |
Alkalis | 0·5 |
——— | |
100·0 |
There may be variations from this composition according to the nature of the raw materials employed. Thus the silica may range from 19 to 27%, the alumina and ferric oxide jointly from 7 to 14%, the lime from 60 to 67%. All such variations are permissible provided that the quantity of silica and alumina is sufficient to saturate the whole of the lime and to leave none of it in a “free” condition, likely to cause the cement to expand after setting. Other things being equal, the higher the percentage of lime within the limits indicated above the stronger is the cement, but such highly limed cement is less easy to burn than cement containing about 62% of lime; and unless the burning is thorough and the raw materials are intimately mixed, the cement is apt to be unsound. Although the ultimate composition of cement, that is, the percentage of each base and acid present, can be accurately determined by analysis, its proximate composition, i.e. the nature and amount of the compounds formed from these acids and bases, can only be ascertained indirectly and with difficulty. The foundations of our knowledge on this subject were laid by H. le Chatelier, whose work has since been supplemented by that of Spenser B. Newberry, W. B. Newberry and Clifford Richardson. As the outcome of these inquiries it has been established that tricalcium silicate 3CaO·SiO2 is the essential constituent of Portland cement. The constituent of next importance is an aluminate, but whether this is dicalcium aluminate, 2CaO·Al2O3, or tricalcium aluminate, 3CaO·Al2O3, is still in doubt. In the following description it is assumed to be the tricalcium aluminate. The remaining silicates and aluminates present, and ferric oxide and magnesia, if existing in the moderate quantities which are usual in Portland cement of good quality, are of minor importance and may be regarded as little more than impurities. The silicates and aluminates of which Portland cement is composed are believed to exist not as individual units but as solid solutions of each other, these solid solutions taking the form of minerals recognizable as individuals. The two principal minerals are termed alite and celite; according to the best opinion, alite consists of a solid solution of tricalcium aluminate in tricalcium silicate, and celite of a solid solution of dicalcium aluminate in dicalcium silicate. Celite is little affected by water, and has but small influence on the setting; alite is decomposed and hydrated, this action constituting the main part of the setting of Portland cement. Both the components of alite react, and for simplicity their reactions may be stated in separate equations, thus:—
(1) 2(3CaO·SiO2) + 9H2O = 2(CaO·SiO2)·5H2O + 4Ca(OH)2
Tricalcium silicate.Hydrated mono-Calcium
calcium silicate.hydroxide.
(2) 3CaO·Al2O3 + 12H2O = 3CaO·Al2O3·12H2O
Tricalcium aluminate.Hydrated tricalcium aluminate.
Since alite is a solid solution and, although an individual mineral, is not a chemical unit, the proportion of tricalcium silicate to tricalcium aluminate in a given specimen of alite will vary; but, whatever the proportions, each of these substances will react in its characteristic manner according to the equations given above.
The precise mechanism of the process of setting of Portland cement is not known with certainty, but it is probably analogous to that of the setting of plaster of Paris, consisting in the dissolution of the compounds produced by hydration while they are in a more soluble form, their transition to a less soluble form, the consequent supersaturation of the solution, and the deposition of the surplus of the dissolved substance in crystals which interlock and form a coherent mass. This theory being accepted, it is evident that a small quantity of water, by successive dissolution and deposition of a substance capable of existing in a more soluble and in a less soluble form, is able to bring about the crystallization of an indefinitely large quantity of material. It is not necessary that there should be present sufficient water to dissolve the whole of the reacting substance at any one time; it is sufficient if there is enough for hydration and a small surplus for the crystallization by successive stages as above described. It is generally admitted that the aluminate is the chief agent in the first setting of the cement, and that its ultimate hardening and attainment of strength are due to the tricalcium silicate.
As mentioned above, the constituents other than the tricalcium silicate and tricalcium aluminate of which alite is composed, are of minor importance. The function of the ferric oxide present in ordinary cement is little more than that of a flux to aid the union of silica, alumina and lime in the clinker; its rôle in the setting of the cement is altogether secondary. In fact, excellent Portland cement can be prepared from materials free from iron. Such cement, if free also from manganese, is white, and its manufacture has been proposed for exterior decorative use. Magnesia, if present in Portland cement in quantity not exceeding 5%, appears to be inert, but there is evidence that in larger proportion, e.g. 10-15%, it may hydrate and set after the general setting of the cement, and may give rise to disruptive strains causing the cement to “blow” and fail. In so-called natural cement which is comparatively lightly burnt, the magnesia appears to be inert, and as much as 20 to 30% may be present. Another constituent of Portland cement which influences